

STORMWATER REPORT FOR THE ENGINE YARD 40 Alpine Row (AM 279 Parcel 181) Franklin, Massachusetts

Prepared By: Level Design Group, L.L.C. 249 South Street, Unit 1 Plainville, MA 02762

Prepared For: Walker Development & Construction, Inc. Attn: Mr. Jeffrey Walker 5 Mt. Royal Ave, Suite 40 Marlborough, MA 01752

> LDG Project No.: 1880.00

TABLE OF CONTENTS

- 1. Hydrologic Summary
- 2. MADEP Stormwater Report Checklist
- 3. USGS Topographic Map (MAGIS)
- 4. On-Site Soils Documentation
- 5. Stormwater Treatment Unit Documentation
- 6. Rational Method Pipe-to-Pipe Calculations
- 7. Illicit Discharge Statement
- 8. HydroCAD Analysis, Existing Conditions Subcatchments
- 9. HydroCAD Analysis, Proposed Conditions Subcatchments
- 10. HydroCAD Analysis, Existing and Proposed Conditions 2-, 10-, 25-, 100-Yr Storms
- 11. Operation and Maintenance Plan
- 12. Long Term Pollution Prevention Plan
- 13. NPDES Stormwater Pollution Prevention Plan (DRAFT)

HYDROLOGIC SUMMARY

METHODOLOGY

The HydroCAD computer program (HydroCAD) was used to model the existing and proposed hydrology of the site and design a stormwater management system. HydroCAD generates flood hydrographs dependent upon the type of land use, vegetation, soil types, land slope, watershed areas and rainfall data. HydroCAD also takes into account the antecedent moisture condition of the soil. The peak rate of runoff and volume of runoff are projected for the input storm frequency events (design storms).

Rainfall data was obtained from the United States Weather Bureau Technical Paper 40. Rainfall amounts for storm frequencies of 2-, 10-, 25- and 100-year return periods for Bristol County, Massachusetts were input into HydroCAD. A 24-hour type III rainfall distribution was used in the HydroCAD analysis as prescribed for New England by the USDA Soil Conservation Service (SCS).

PRE-DEVELOPMENT CONDITIONS

The project site is located at 40 Alpine Row, Franklin, MA. Assessor's Parcel ID: 279-181 is a 1.32 Acre Downtown Commercial zoned property with an existing office/warehouse building, several garages, and associated parking facilities, utilities, and drainage. The project is bordered to the south by Alpine Row, Alpine Place and residential lots, to the north by a Massachusetts Bay Transportation Railroad, and residential homes to the east and west.

The existing site drains principally to the northeast, with approximately 1.3 acres draining northeast through the existing parking lot and discharging through either the existing catch basin drywell in the center of the property or the existing catch basin on the east side of the property to the abutting railroad to the north. The existing drainage system provides minimal treatment, infiltration, or detention of stormwater runoff. The predevelopment drainage area is modeled as a single hydrologic area. This hydrologic area is identified on the Pre-Development Watershed Plan attached to this report and is denoted as 1S. Hydrologic area 1S contains approximately 1.3 acres of contributing area and drains north and northeast to the abutting Massachusetts Bay Transportation Railroad. The model includes flow from Alpine as a separate subcatchment to detail flow conditions within the pipe network, influenced by the Town.

Ground cover of the site is primarily paved with some vegetation interior to areas where there have been previous items removed from the property. The current impervious coverage on-site is 53,360 s.f., which includes the "grassed" areas within the containment walls. This grass is growing through the gravel containment areas within the walls, it is not a grassed area as detailed in previous studies. On-site test pits were dug in the areas of the proposed stormwater management facilities to verify existing soil conditions and determine the estimated seasonal high groundwater elevation (ESHGWE). Soils documented in the soil test pits are gravelly sand with no evidence of ESHWE visible within the test pit holes

The on-site soils within the area of the limits of the development are classified by the Soil Survey for Bristol County Massachusetts, Northern Part:

602 -Urban Land, HSG based upon geotechnical

See the SCS soils documentation and test pit logs attached herein for additional on-site soil details.

Based on current MAGIS Mapping the site is NOT located in any of the following environmentally sensitive areas:

- Areas of Critical Environmental Concern
- Natural Heritage and Endangered Species Program Priority Habitats of Rare Species
- Natural Heritage and Endangered Species Program Estimated Habitats of Rare Wildlife
- Natural Heritage and Endangered Species Program Natural Communities
- Natural Heritage and Endangered Species Program Certified Vernal Pools
- MADEP Wellhead Protection Areas Zone 1 & Zone 2
- Surface Water Supply Protection Areas Zone A, Zone B, & Zone C
- MADEP Surface Water Supply Watersheds
- MA DFW Coldwater Fisheries Resource Area.

POST-DEVELOPMENT CONDITIONS

The Applicant is proposing the demolition of all but on on-site structure and the associated pavement due to regrading. The 6,061 s.f. structure to the west side of the property will remain and redevelopment will occur around the property. The applicant proposes the construction of a $12,230\pm$ s.f. Footprint structure with commercial, multi-family and underlevel parking, associated utilities and parking.

A new site drainage system is developed to capture and infiltrate the roof area of the proposed structure, and provide treatment of the entire parking area, with the exception of approximately 2,100 s.f. of the new parking lot between the proposed building and existing building. The existing building will not be captured in the drainage planning, however with the removal of pavement at the front of the building will be utilized and partially infiltrated prior to discharge to the roadway.

Runoff from all paved areas will be collected in deep-sump and hooded catch basins and treated by a CDS or VortSentry Stormwater Treatment Unit prior to discharge to the existing municipal system which crosses the property. This provides a required minimum 44% TSS removal required prior to discharging to an infiltration practice in the event the municipal system is modified at a later date. The infiltration pit configuration has been designed to fully infiltrate stormwater flows for the 2-, 10-, & 25- year design storms. With an overflow discharge after the final basin through a catch basin grate, which will flow to the on-site Double catch basin and through the CDS unit for the side of the parking lot.

The total proposed site impervious coverage is $45,146\pm$ sf. This is a total impervious lot coverage of 78.5% over the parcel the Building lot coverage is far less with a total coverage of 31.8%.

A fully compliant stormwater management system for the entire site addressing compliance with the 10 MADEP Stormwater Standards will be part of the site redevelopment. Site improvements have

been made to the maximum extent practicable in accordance with MADEP Stormwater Regulations.

STANDARD 1: Untreated Discharges

Stormwater Management Standard 1 requires that, "No new stormwater conveyances (e.g. outfalls) may discharge untreated stormwater directly to or cause erosion in wetlands or waters of the Commonwealth".

This standard is met by the proposed redevelopment not creating any new non-treated stormwater discharges. All surface runoff from the proposed impervious areas is collected and treated for suspended solids removal and directed to the existing on-site drainage line. The treatment of the site drainage prior to discharge mimic existing drainage flow patterns while maintaining a cleaner site flow.

STANDARD 2: Peak Rate Control and Flood Prevention

Stormwater Management Standard 2 requires that, "Stormwater management systems must be designed so that post-development peak discharge rates do not exceed pre-development peak discharge rates. This Standard may be waived for land subject to coastal storm flowage."

This standard is met by the proposed development mitigating the post-development peak discharge rates at the designated control point for all design storm events. This is accomplished by directing stormwater flow from the proposed building roof area to multiple infiltration systems located on the site. Below is a description of the control point used in the hydrologic analysis and a summary of preand post- development discharge rates. The proposed development will reduce the peak rate of runoff at all the design control points and provide ample groundwater recharge.

SUMMARY OF PEAK STORMWATER RUNOFF (CFS)

One singular control point was used in the analysis. This point was chosen as it is the outfall of the existing drain system from the property and Town drainage systems at the north side of the site, adjacent to the Railroad.

Control Point – R1							
Storm Pre-Dev. Post-Dev. Pre-Dev Post-Dev							
	Flow (CFS)	Flow (CFS	.,Volume (af)	Volume (af)			
1-yr	4.04	2.76	0.294	0.176			
2-yr	4.93	3.72	0.363	0.230			
10-yr	7.67	6.40	0.575	0.410			
25-yr	9.79	8.36	0.742	0.560			
100-yr	14.14	12.48	1.084	0.881			

The roadway included in the calculations is a constant, but the roadway area (estimated) contributes approximately ¼ of the flow to each the pre and post development scenarios. The net peak discharge is controlled and does not increase at the control points for any of the evaluated design storms.

STANDARD 3: Recharge to Groundwater

Stormwater Management Standard 3 requires that, "Loss of annual recharge to groundwater shall be eliminated or minimized through the use of infiltration measures, including environmentally sensitive site design, low impact development techniques, best management practices, and good operation and maintenance. At a minimum, the annual recharge from the post-development site shall approximate the annual recharge from the pre-development conditions based on soil type. This Standard is met when the stormwater management system is designed to infiltrate the required recharge volume as determined in accordance with the Massachusetts Stormwater Handbook."

This standard is fulfilled through the infiltration of the proposed building roof area. This 12,230 s.f. is controlled through proposed infiltration pits, which overflow to eachother until the final basin which has a catch basin grate, which will flow to the low point double catch basin, flow through the on-site CDS prior to discharge. There is very little infiltration which occurs through the on-site 4,000 s.f. of pervious area. All stormwater discharged to the proposed infiltration practices is roof drainage and is considered "clean" by stormwater standards and the remainder of the site discharge is treated in excess of 44% TSS removal prior to discharge to the municipal system. Below is a detailed calculation demonstrating full compliance with the recharge to groundwater requirements.

GROUND WATER RECHARGE

The on-site soils as classified by the Soil Survey for Bristol County Massachusetts, Northern Part are Hinckley loamy sand, 8 to 15 percent slopes, Hydrologic Soil Group (HSG) B. Based on test pits by Level Design Group, LLC, on-site parent soils are identified as sand and/or gravelly sand within the area of the proposed infiltration basins and an infiltration rate of 2.41 inches per hour was used based on the Rawls Rates. The required infiltration for a HSG B soil is 0.35 inches of runoff times the total impervious area.

The post-development increase in impervious area must be utilized for the recharge calculations as a redevelopment project. However, there is an overall decrease in impervious area on-site through the development. As such the evaluation which took place incorporates the final site impervious area for the analysis. The required recharge volume is calculated as follows:

Required Recharge Volume for the Development = $(45,146 \pm \text{sf of impervious area}) \times (0.35 \text{ in of runoff})$ for HSG B) x (1 ft./12 in.) = <u>1,317 \pm cu. ft.</u>

Water used to satisfy the recharge to groundwater standard is from pretreated surface runoff from the parking area and driveway and from the proposed building rooftops. The Simple Dynamic Method of Recharge Volume was utilized to calculate recharged groundwater.

Simple Dynamic Method Calculations for all proposed infiltration practices:

Required Recharge Volume:

Rv = F x impervious area created Rv = (HSG "B") x (impervious area created)

Recharge Volume Provided:

A=Rv÷(d+Kt), where d=depth below outlet, Kt=Rawls Rate=2.41 inches per hour t=time (2 hours – Stormwater Handbook Recommendation)

Minimum Required Volume of Infiltration Practice = V (cf) = A x d (or n x d where n is the void space % of the system) where n = Overall Storage Efficiency of the Infiltration pits, d = depth below lowest outlet

The calculations for each of the infiltration systems are detailed in the table below.

System	Impervious Area (sf.)	Rv (cf)	*n x d (ft)	Kt in/hr	t (hr)	Min Req. Area (sf).	Minimum Volume Required (cf)	Volume Provided Below Outlet (cf.)
IP Row	45,146	0	*n=0.72 d=6 nd=4.32	2.41	2	0	0	1,353

*overall storage system efficiency values (n) for the Infiltration Pits is taken from HydroCAD Chamber Wizard for each basin.

The total minimum recharge volume requirement $1,350\pm$ cu. ft. for the entire site is far exceeded with a total provided recharge volume of $1,353\pm$ cu.ft. of storage provided below the lowest outlet of each subsurface infiltration system. All proposed systems far exceed the required design volumes as detailed in the above table.

STANDARD 4: 80% TSS Removal

Stormwater Management Standard 4 requires that, "Stormwater management systems must be designed to remove 80% of the average annual post-construction of Total Suspended Solids (TSS). This standard is met when:

- a. Suitable practices for source control and pollution prevention are identified in a long-term pollution prevention plan and thereafter are implemented and maintained;
- b. Stormwater BMPs are sized to capture the required water quality volume determined in accordance with the Massachusetts Stormwater Handbook and;
- c. Pretreatment is provided in accordance with the Massachusetts Stormwater Handbook"

This standard is met by collecting all surface runoff form all paved areas with deep sump and hooded catch basins. This flow is then treated by a CDS or VortSentry Stormwater Treatment Unit prior to discharge to an infiltration basin providing greater than the required 80% TSS removal as detailed in the attached MADEP TSS Removal Calculation Sheets.

Water Quality Calculations:

The volume of stormwater runoff to be treated for water quality is calculated as one-half inches times the total post-development impervious area of the site based on current MADEP Stormwater Management Standards. With the understanding that the proposed development partially located within the 200' riparian zone and there are sensitive resources within 100' of the development water water quality calculations detail compliance with a wat1/er quality volume equal to one inch times the total post-development impervious. The water quality volume calculation is detailed below.

Total Site Imperious Area= $45,146 \pm \pm \text{ s.f.}$ 1.0 inch x 1 foot/12 inches= 0.0833 feet 0.0833 feet x $45,146 \pm \text{ s.f.} = 3,760 \pm \text{ cu.ft.}$

Total Volume to be treated for Water Quality= $3,760 \pm$ cu.ft.

As detailed above, the two proposed infiltration systems provide $1,353\pm$ cu.ft. of volume below their lowest outlets. This volume satisfies the required $3,760\pm$ cu.ft of water quality volume to be treated for the proposed development. To achieve the required 44% TSS removal prior to flow being infiltrated a variety of structural practices are utilized. All impervious areas, not including roof top runoff directly piped to an infiltration practice, will be collected in deep sump and hooded catch basins and treated by a CDS Stormwater Treatment Unit to achieve the minimum 44% TSS removal required for each system prior to flows being infiltrated. Sizing calculation for the two Stormwater Treatment Units is detailed below.

CDS Stormwater Treatment Unit Sizing

The CDS Units are sized using the Massachusetts Department of Environmental Protection Wetlands Program – Standard Method to Convert Required Water Quality Volume to a Discharge Rate for Sizing Flow Based Manufactured Proprietary Stormwater Treatment Practices.

Flow to DBLE CB

 $Q_{1.0}=(qu)(A)(WQV)$

qu=774 csm/in for a Tc of 0.1 hours (taken from Figure 2 of the Massachusetts Department of Environmental Protection Wetlands program - Standard Method to Convert Required Water Quality Volume to a Discharge Rate

A=0.587 Acres

WQV=1.0 inches

Q_{1.0}=(774 csm/in) (0.587 acres - impervious coverage) (0.0015625 sq. mi *l* acre) (1.0 inch)

Q1.0 = 0.059 cfs < CDS Model 2015 with a Treatment Capacity =1.4 cfs

Flow to CB

$Q_{1.0}=(qu)(A)(WQV)$

qu=774 csm/in for a Tc of 0.1 hours (taken from Figure 2 of the Massachusetts Department of Environmental Protection Wetlands program - Standard Method to Convert Required Water Quality Volume to a Discharge Rate

A=0.179 acres

WQV=1.0 inches

Q_{1.0} =(774 csm/in) (0.179 acres) (0.0015625 sq. mi *l* acre) (1.0 inch)

Q_{1.0} = 0.018 cfs < VortSentryit with a Treatment Capacity = 1.2 cfs

STANDARD 5: Higher Potential Pollutant Loads

Stormwater Management Standard 5 requires that, "For land uses with higher potential pollutant loads, source control and pollution prevention shall be implemented in accordance with the Massachusetts Stormwater Handbook to eliminate or reduce the discharge of stormwater runoff from such land uses to the maximum extent practicable. If through source control and/or pollution prevention, all land uses with higher potential pollutant loads cannot be completely protected from exposure to rain, snow, snow melt and stormwater runoff, the proponent shall use the specific stormwater BMPs determined by the Department to be suitable for such use as provided in the Massachusetts Stormwater Handbook. Stormwater discharges from land uses with higher potential pollutant loads shall also comply with the requirements of the Massachusetts Clean Waters Act, M.G.L. c. 2,§26-53, and the regulations promulgated thereunder at 314 CMF 3.00, 314 CMR 4.00 and 314 CMR 5.00."

The proposed use in not considered a use that would generate Higher Potential Pollutant Loads.

STANDARD 6: Critical Areas

Stormwater Management Standard 6 requires that Stormwater discharge to a Zone II Interim Wellhead Protection Area of a public water supply and stormwater discharges near any other critical area require the use of specific source control and pollution prevention measures and the specific stormwater best management practices determined by the Department to be suitable for managing discharges to such area, as provided in the Massachusetts Stormwater Handbook. A discharge near a critical area, if there is a strong likelihood of a significant impact occurring to said area, taking into account site-specific factors. Stormwater discharges to Outstanding Resource Waters or Special Resource Waters shall be set back from the receiving water and receive the highest and best practical method of treatment. A "stormwater discharge," as defined in 314 CMR 3.04(2)(a)1. or (b), to an Outstanding Resource Waters or Special Resource Waters shall comply with 314 CMF 3.00 and 314 CMR 4.00. Stormwater discharges to a Zone I or Zone A area prohibited unless essential to the operation of the public water supply."

The development site is not located within a Critical Area as defined by the Massachusetts Stormwater Handbook.

STANDARD 7: Redevelopment and Other Projects Subject to the Standards only to the Maximum Extent Practicable

The definition of a Redevelopment Project under the definition provided in the MADEP Stormwater Handbook for Standard 7 is listed below:

"Development rehabilitation, expansion and phased projected on previously developed sites, provided that redevelopment results in no next increase in impervious area."

The proposed development is considered a Redevelopment Project however, it fully complies with the requirements of the MADEP Stormwater Management Standards.

STANDARD 8: Erosion and Sediment Control

Stormwater Management Standard 8 requires that, "A plan to control construction-related impacts, including erosion sedimentation and other pollutant sources during construction and land disturbance activities (construction period erosion, sedimentation, and pollution prevention plan), must be developed and implemented."

This standard is met by including erosion and sediment controls within the design plans. A gravel construction entrance is proposed at the access point to the site once the pavement is removed from that area of the site. A 9" diameter Filtrexx Silt Sox is proposed at the limits of all site related construction activities. Silt sacks are also proposed to be installed in all of the existing catch basins within the area of the proposed site disturbance and within proposed structures until the site has been stabilized and the stormwater management system is brought on-line. A draft Stormwater Pollution Prevention Plan (SWPPP) has been prepared and is included as part of the Stormwater Report. The SWPPP will be finalized prior to construction as required when a NPDES General Construction Permit is applied for.

STANDARD 9: Operation and Maintenance

Stormwater Management Standard 9 requires that, "A long-term operation and maintenance plan must be developed and implemented to ensure that stormwater management systems function as designed".

This standard is fully met with development and implementation of an Operation and Maintenance Plan, which is included in Stormwater Management Report.

STANDARD 10: Illicit Discharges

Stormwater Management Standard 10 requires that, "All illicit discharges to the stormwater management system are prohibited".

This standard is fully met with development and implementation of a Long Term Pollution Prevention which is included in the Stormwater Management Report. An Illicit Discharge statement has been prepared and is included herein.

CONCLUSION

The proposed development of this parcel will be a significant improvement to the area and to the onsite resource areas. The proposed development meets or exceeds the current MADEP Stormwater Management Standards and Guidelines and provides a stormwater management system that will maintain water quality while attenuating peak rates of runoff at the control points which providing maximum on-site groundwater recharge. This was achieved by using pretreatment BMPs and directing the stormwater runoff to multiple infiltration basins which attenuate peak flows while maximizing groundwater recharge and providing high a level of TSS removal. An Operation and Maintenance Plan for post-construction maintenance of the Stormwater Management System has been developed and is included with this report.

MADEP Stormwater Report Checklist

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Long-term Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

Signature and Date

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Mix of New Development and Redevelopment

Checklist (continued)

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

\boxtimes	No disturbance to any Wetland Resource Areas
	Site Design Practices (e.g. clustered development, reduced frontage setbacks)
\bowtie	Reduced Impervious Area (Redevelopment Only)
	Minimizing disturbance to existing trees and shrubs
	LID Site Design Credit Requested:
	Credit 1
	Credit 2
	Credit 3
	Use of "country drainage" versus curb and gutter conveyance and pipe
	Bioretention Cells (includes Rain Gardens)
	Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
	Treebox Filter
	Water Quality Swale
	Grass Channel
	Green Roof
	Other (describe):

Standard 1: No New Untreated Discharges

- \mathbf{X} No new untreated discharges
- Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- \bigstar Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

- Soil Analysis provided.
- X Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

Static	Simple Dynamic
--------	----------------

Dynamic Field¹

- Runoff from all impervious areas at the site discharging to the infiltration BMP.
- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
 - Site is comprised solely of C and D soils and/or bedrock at the land surface
 - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
 - Solid Waste Landfill pursuant to 310 CMR 19.000
 - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- Calculations showing that the infiltration BMPs will drain in 72 hours are provided.
- Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
 - is within the Zone II or Interim Wellhead Protection Area
 - is near or to other critical areas
 - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
 - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Standard 4: Water Quality (continued)
The BMP is sized (and calculations provided) based on:
The $\frac{1}{2}$ or 1" Water Quality Volume or
The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
☐ The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.
Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)
 The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report. The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted <i>prior</i> <i>to</i> the discharge of stormwater to the post-construction stormwater BMPs.
The NPDES Multi-Sector General Permit does <i>not</i> cover the land use.
LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
All exposure has been eliminated.
All exposure has <i>not</i> been eliminated and all BMPs selected are on MassDEP LUHPPL list.
☐ The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.
Standard 6: Critical Areas
The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.

Critical areas and BMPs are identified in the Stormwater Report.

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

- The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:
 - Limited Project
 - Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.
 - Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area
 - Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
 - Bike Path and/or Foot Path
 - Redevelopment Project
 - Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.
- The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

To be completed at the end of permitting for review by the Town selected review Engineer

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

- ☐ The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is **not** covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is *not* the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

USGS Topographic Map (MAGIS)

FEMA FIRM Map

National Flood Hazard Layer FIRMette

Legend

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

On-Site Soils Documentation

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

	MAP LEGEND			MAP INFORMATION
Area of In	terest (AOI) Area of Interest (AOI)	8	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:25,000.
Soils 	Soil Map Unit Polygons Soil Map Unit Lines Soil Map Unit Points Point Features Blowout	Ø ♥ ▲ Water Fea	Very Stony Spot Wet Spot Other Special Line Features	Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.
◎ ☆ ◇ 光 ☆ ◎ ● ★ ☆ ◎ ◎ ◆ 十 ∵ ● ◇ ∢ ◎	Borrow Pit Clay Spot Closed Depression Gravel Pit Gravelly Spot Landfill Lava Flow Marsh or swamp Mine or Quarry Miscellaneous Water Perennial Water Rock Outcrop Saline Spot Sandy Spot Severely Eroded Spot Sinkhole Slide or Slip Sodic Spot	Transport	Streams and Canals ation Rails Interstate Highways US Routes Major Roads Local Roads nd Aerial Photography	 Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Norfolk and Suffolk Counties, Massachusetts Survey Area Data: Version 16, Jun 11, 2020 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Jul 5, 2019—Jul 8, 2019 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol Map Unit Name		Acres in AOI	Percent of AOI
602	Urban land, 0 to 15 percent slopes	1.7	100.0%
Totals for Area of Interest		1.7	100.0%

Stormwater Treatment Unit Documentation

CDS1515-3-C DESIGN NOTES

CDS1515-3-C RATED TREATMENT CAPACITY IS 1.0 CFS, OR PER LOCAL REGULATIONS.

THE STANDARD CDS1515-3-C CONFIGURATION IS SHOWN.

GENERAL NOTES

- 1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE. 2. FOR SITE SPECIFIC DRAWINGS WITH DETAILED STRUCTURE DIMENSIONS AND WEIGHT, PLEASE CONTACT YOUR CONTECH ENGINEERED
- SOLUTIONS LLC REPRESENTATIVE. www.ContechES.com 3. CDS WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS DRAWING.
- CONTRACTOR TO CONFIRM STRUCTURE MEETS REQUIREMENTS OF PROJECT. 4. STRUCTURE SHALL MEET AASHTO HS20 LOAD RATING, ASSUMING EARTH COVER OF 0' - 2', AND GROUNDWATER ELEVATION AT, OR BELOW,
- THE OUTLET PIPE INVERT ELEVATION. ENGINEER OF RECORD TO CONFIRM ACTUAL GROUNDWATER ELEVATION. CASTINGS SHALL MEET AASHTO M306 AND BE CAST WITH THE CONTECH LOGO.
- 5. IF REQUIRED, PVC HYDRAULIC SHEAR PLATE IS PLACED ON SHELF AT BOTTOM OF SCREEN CYLINDER. REMOVE AND REPLACE AS NECESSARY DURING MAINTENANCE CLEANING.
- 6. CDS STRUCTURE SHALL BE PRECAST CONCRETE CONFORMING TO ASTM C-478 AND AASHTO LOAD FACTOR DESIGN METHOD.

INSTALLATION NOTES

- A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE SPECIFIED BY ENGINEER OF RECORD.
- CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE CDS MANHOLE STRUCTURE. CONTRACTOR TO INSTALL JOINT SEALANT BETWEEN ALL STRUCTURE SECTIONS AND ASSEMBLE STRUCTURE. C.
- CONTRACTOR TO PROVIDE, INSTALL, AND GROUT INLET AND OUTLET PIPE(S). MATCH PIPE INVERTS WITH ELEVATIONS SHOWN. ALL PIPE D.
- CENTERLINES TO MATCH PIPE OPENING CENTERLINES.
- E. CONTRACTOR TO TAKE APPROPRIATE MEASURES TO ASSURE UNIT IS WATER TIGHT, HOLDING WATER TO FLOWLINE INVERT MINIMUM. IT IS SUGGESTED THAT ALL JOINTS BELOW PIPE INVERTS ARE GROUTED.

SITE SPECIFIC **DATA REQUIREMENTS**

STRUCTURE ID							
WATER QUALITY FLOW RATE (CFS OR L/s) *							
PEAK FLOW RATE (CFS OR L/s) *							
RETURN PERIOD	OF PEAK F	LO	W (YRS)		*		
SCREEN APERTU	JRE (2400 C	0R 4	700)		*		
PIPE DATA:							
INLET PIPE 1 * *					*		
INLET PIPE 2 * *					*		
OUTLET PIPE	*		*		*		
					1		
RIM ELEVATION					*		
ANTI-FLOTATION	BALLAST		WIDTH		HEIGHT		
* *							
NOTES/SPECIAL REQUIREMENTS:							
* PER ENGINEER OF RECORD							

CDS1515-3-C

ONLINE CDS

STANDARD DETAIL

Project: Location: Prepared For:	The Engine Yard Franklin, MA Level Design / Dan Campbell	C NTECH ENGINEERED SOLUTIONS			
<u>Purpose:</u>	To calculate the water quality flow rate (WQF) over a given site area. derived from the first 1" of runoff from the contributing impervious sur	In this situation the WQF is face.			
Reference:	Massachusetts Dept. of Environmental Protection Wetlands Program Agriculture Natural Resources Conservation Service TR-55 Manual	n / United States Department of			
Procedure:	Determine unit peak discharge using Figure 1 or 2. Figure 2 is in tabular form so is preferred. Using the tc, read the unit peak discharge (qu) from Figure 1 or Table in Figure 2. qu is expressed in the following units: cfs/mi ² /watershed inches (csm/in).				
	Compute Q Rate using the following equation:				
	Q = (qu) (A) (WQV)				
	where: Q = flow rate associated with first 1" of runoff qu = the unit peak discharge, in csm/in.				

A = impervious surface drainage area (in square miles) WQV = water quality volume in watershed inches (1" in this case)

Structure	Impv.	A	t _c	t _c	WQV	qu (csm/in.)	Q (cfs)	
Name	(acres)	(miles⁻)	(min)	(nr)	(IN)			
WQU #1	0.75	0.0011719	5.0	0.083	1.00	795.00	0.93	
WQI	0.11	0.0001719	5.0	0.083	1.00	795.00	0.14	

CDS ESTIMATED NET ANNUAL SOLIDS LOAD REDUCTION **BASED ON THE RATIONAL RAINFALL METHOD** THE ENGINE YARD FRANKLIN, MA 0.11 ac Unit Site Designation WQI Area 0.9 Rainfall Station # Weighted C 68 5 min t_c CDS Model 1515-3 **CDS** Treatment Capacity 1.0 cfs Rainfall Percent Rainfall Cumulative Total Flowrate **Treated Flowrate** Incremental Intensity¹ Volume¹ **Rainfall Volume** (cfs) Removal (%) (cfs) (in/hr) 0.02 9.3% 9.3% 0.00 0.00 9.3 0.04 9.5% 18.8% 0.00 0.00 9.5 0.06 8.7% 27.5% 0.01 0.01 8.7 0.08 10.1% 37.6% 0.01 0.01 10.1 0.10 7.2% 44.8% 0.01 0.01 7.2 0.12 6.0% 50.8% 0.01 0.01 6.0 0.14 6.3% 57.1% 0.01 0.01 6.3 5.6 0.16 5.6% 62.7% 0.02 0.02 0.18 4.7% 67.4% 0.02 0.02 4.7 0.20 3.6% 71.0% 0.02 0.02 3.6 0.25 8.2% 79.1% 0.02 0.02 8.2 94.0% 0.05 14.8 0.50 14.9% 0.05 0.75 3.2% 97.3% 0.07 0.07 3.2 1.00 1.2% 98.5% 0.10 0.10 1.2 0.7% 99.2% 1.50 0.15 0.15 0.7 2.00 0.8% 100.0% 0.20 0.20 0.7 0.00 0.0% 100.0% 0.00 0.00 0.0 0.00 0.0% 100.0% 0.00 0.00 0.0 0.00 0.0% 100.0% 0.00 0.00 0.0 0.00 0.0% 100.0% 0.00 0.00 0.0 100.0% 0.00 0.0% 0.00 0.00 0.0 99.6 Removal Efficiency Adjustment² = 6.5% Predicted % Annual Rainfall Treated = 93.5% Predicted Net Annual Load Removal Efficiency = 93.2% 1 - Based on 10 years of rainfall data from NCDC station 736, Blue Hill, Norfolk County, MA 2 - Reduction due to use of 60-minute data for a site that has a time of concentration less than 30-minutes.

CDS ESTIMATED NET ANNUAL SOLIDS LOAD REDUCTION **BASED ON THE RATIONAL RAINFALL METHOD** THE ENGINE YARD FRANKLIN, MA 0.75 ac Unit Site Designation **WQU #1** Area 0.9 Rainfall Station # Weighted C 68 5 min t_c CDS Model 1515-3 **CDS** Treatment Capacity 1.0 cfs Rainfall Percent Rainfall Cumulative Total Flowrate **Treated Flowrate** Incremental Intensity¹ Volume¹ **Rainfall Volume** (cfs) Removal (%) (cfs) (in/hr) 0.02 9.3% 9.3% 0.01 0.01 9.3 0.04 9.5% 18.8% 0.03 0.03 9.5 0.06 8.7% 27.5% 0.04 0.04 8.7 0.08 10.1% 37.6% 0.05 0.05 10.0 0.10 7.2% 44.8% 0.07 0.07 7.0 5.9 0.12 6.0% 50.8% 0.08 0.08 0.14 6.3% 57.1% 0.09 0.09 6.1 0.16 5.6% 62.7% 0.11 0.11 5.4 0.18 4.7% 67.4% 0.12 0.12 4.5 0.20 3.6% 71.0% 0.14 0.14 3.4 0.25 8.2% 79.1% 0.17 0.17 7.6 12.7 94.0% 0.34 0.34 0.50 14.9% 0.75 3.2% 97.3% 0.51 0.51 2.5 1.00 1.2% 98.5% 0.68 0.68 0.9 0.7% 99.2% 1.50 1.01 1.00 0.4 2.00 0.8% 100.0% 1.35 1.00 0.3 0.00 0.0% 100.0% 0.00 0.00 0.0 0.00 0.0% 100.0% 0.00 0.00 0.0 0.00 0.0% 100.0% 0.00 0.00 0.0 0.00 0.0% 100.0% 0.00 0.00 0.0 0.00 0.0% 100.0% 0.00 0.00 0.0 94.1 Removal Efficiency Adjustment² = 6.5% Predicted % Annual Rainfall Treated = 93.3% Predicted Net Annual Load Removal Efficiency = 87.7% 1 - Based on 10 years of rainfall data from NCDC station 736, Blue Hill, Norfolk County, MA 2 - Reduction due to use of 60-minute data for a site that has a time of concentration less than 30-minutes.

STORM WATER TREATMENT DEVICE

1.0 GENERAL

- 1.1 This item shall govern the furnishing and installation of the CDS[®] by Contech Engineered Solutions LLC, complete and operable as shown and as specified herein, in accordance with the requirements of the plans and contract documents.
- 1.2 The Contractor shall furnish all labor, equipment and materials necessary to install the storm water treatment device(s) (SWTD) and appurtenances specified in the Drawings and these specifications.
- 1.3 The manufacturer of the SWTD shall be one that is regularly engaged in the engineering design and production of systems deployed for the treatment of storm water runoff for at least five (5) years and which have a history of successful production, acceptable to the Engineer. In accordance with the Drawings, the SWTD(s) shall be a CDS[®] device manufactured by:

Contech Engineered Solutions LLC 9025 Centre Pointe Drive West Chester, OH, 45069 Tel: 1 800 338 1122

1.4 Related Sections

- 1.4.1 Section 02240: Dewatering
- 1.4.2 Section 02260: Excavation Support and Protection
- 1.4.3 Section 02315: Excavation and Fill
- 1.4.4 Section 02340: Soil Stabilization
- 1.5 All components shall be subject to inspection by the engineer at the place of manufacture and/or installation. All components are subject to being rejected or identified for repair if the quality of materials and manufacturing do not comply with the requirements of this specification. Components which have been identified as defective may be subject for repair where final acceptance of the component is contingent on the discretion of the Engineer.
- 1.6 The manufacturer shall guarantee the SWTD components against all manufacturer originated defects in materials or workmanship for a period of twelve (12) months from the date the components are delivered to the owner for installation. The manufacturer shall upon its determination repair, correct or replace any manufacturer originated defects advised in writing to the manufacturer within the referenced warranty period. The use of SWTD components shall be limited to the application for which it was specifically designed.
- 1.7 The SWTD manufacturer shall submit to the Engineer of Record a "Manufacturer's Performance Certification" certifying that each SWTD is capable of achieving the specified removal efficiencies listed in these specifications. The certification shall be supported by independent third-party research

1.8 No product substitutions shall be accepted unless submitted 10 days prior to project bid date, or as directed by the Engineer of Record. Submissions for substitutions require review and approval by the Engineer of Record, for hydraulic performance, impact to project designs, equivalent treatment performance, and any required project plan and report (hydrology/hydraulic, water quality, stormwater pollution) modifications that would be required by the approving jurisdictions/agencies. Contractor to coordinate with the Engineer of Record any applicable modifications to the project estimates of cost, bonding amount determinations, plan check fees for changes to approved documents, and/or any other regulatory requirements resulting from the product substitution.

2.0 MATERIALS

- 2.1 Housing unit of stormwater treatment device shall be constructed of pre-cast or cast-in-place concrete, no exceptions. Precast concrete components shall conform to applicable sections of ASTM C 478, ASTM C 857 and ASTM C 858 and the following:
 - 2.1.1 Concrete shall achieve a minimum 28-day compressive strength of 4,000 pounds per square-inch (psi);
 - 2.1.2 Unless otherwise noted, the precast concrete sections shall be designed to withstand lateral earth and AASHTO H-20 traffic loads;
 - 2.1.3 Cement shall be Type III Portland Cement conforming to ASTM C 150;
 - 2.1.4 Aggregates shall conform to ASTM C 33;
 - 2.1.5 Reinforcing steel shall be deformed billet-steel bars, welded steel wire or deformed welded steel wire conforming to ASTM A 615, A 185, or A 497.
 - 2.1.6 Joints shall be sealed with preformed joint sealing compound conforming to ASTM C 990.
 - 2.1.7 Shipping of components shall not be initiated until a minimum compressive strength of 4,000 psi is attained or five (5) calendar days after fabrication has expired, whichever occurs first.
- 2.2 Internal Components and appurtenances shall conform to the following:
 - 2.2.1 Screen and support structure shall be manufactured of Type 316 and 316L stainless steel conforming to ASTM F 1267-01;
 - 2.2.2 Hardware shall be manufactured of Type 316 stainless steel conforming to ASTM A 320;
 - 2.2.3 Fiberglass components shall conform to the ASTM D-4097
 - 2.2.4 Access system(s) conform to the following:
 - 2.2.5 Manhole castings shall be designed to withstand AASHTO H-20 loadings and manufactured of cast-iron conforming to ASTM A 48 Class 30.

3.0 PERFORMANCE

- 3.1 The SWTD shall be sized to either achieve an 80 percent average annual reduction in the total suspended solid load or treat a flow rate designated by the jurisdiction in which the project is located. Both methods should be sized using a particle size distribution having a mean particle size (d₅₀) of 125 microns unless otherwise stated.
- 3.2 The SWTD shall be capable of capturing and retaining 100 percent of pollutants greater than or equal to 2.4 millimeters (mm) regardless of the pollutant's specific gravity (i.e.: floatable and neutrally buoyant materials) for flows up to the device's rated-treatment capacity. The SWTD shall be designed to retain all previously captured pollutants addressed by this

subsection under all flow conditions. The SWTD shall be capable of capturing and retaining total petroleum hydrocarbons. The SWTD shall be capable of achieving a removal efficiency of 92 and 78 percent when the device is operating at 25 and 50 percent of its rated-treatment capacity. These removal efficiencies shall be based on independent third-party research for influent oil concentrations representative of storm water runoff ($20 \pm 5 \text{ mg/L}$). The SWTD shall be greater than 99 percent effective in controlling dry-weather accidental oil spills.

- 3.3 The SWTD shall be designed with a sump chamber for the storage of captured sediments and other negatively buoyant pollutants in between maintenance cycles. The minimum storage capacity provided by the sump chamber shall be in accordance with the volume listed in Table 1. The boundaries of the sump chamber shall be limited to that which do not degrade the SWTD's treatment efficiency as captured pollutants accumulate. The sump chamber shall be separate from the treatment processing portion(s) of the SWTD to minimize the probability of fine particle re-suspension. In order to not restrict the Owner's ability to maintain the SWTD, the minimum dimension providing access from the ground surface to the sump chamber shall be 16 inches in diameter.
- 3.4 The SWTD shall be designed to capture and retain Total Petroleum Hydrocarbons generated by wet-weather flow and dry-weather gross spills and have a capacity listed in Table 1 of the required unit.
- 3.5 The SWTD shall convey the flow from the peak storm event of the drainage network, in accordance with required hydraulic upstream conditions as defined by the Engineer. If a substitute SWTD is proposed, supporting documentation shall be submitted that demonstrates equal or better upstream hydraulic conditions compared to that specified herein. This documentation shall be signed and sealed by a Professional Engineer registered in the State of the work. All costs associated with preparing and certifying this documentation shall be born solely by the Contractor.
- 3.6 The SWTD shall have completed field tested following TARP Tier II protocol requirements

4.0 EXECUTION

- 4.1 The contractor shall exercise care in the storage and handling of the SWTD components prior to and during installation. Any repair or replacement costs associated with events occurring after delivery is accepted and unloading has commenced shall be borne by the contractor.
- 4.2 The SWTD shall be installed in accordance with the manufacturer's recommendations and related sections of the contract documents. The manufacturer shall provide the contractor installation instructions and offer on-site guidance during the important stages of the installation as identified by the manufacturer at no additional expense. A minimum of 72 hours notice shall be provided to the manufacturer prior to their performance of the services included under this subsection.
- 4.3 The contractor shall fill all voids associated with lifting provisions provided by the manufacturer. These voids shall be filled with non-shrinking grout providing a finished surface consistent with adjacent surfaces. The contractor shall trim all protruding lifting provisions flush with the adjacent concrete surface in a manner, which leaves no sharp points or edges.
4.4 The contractor shall removal all loose material and pooling water from the SWTD prior to the transfer of operational responsibility to the Owner.

CDS Model	Minimum Sump Storage Capacity (vd ³)/(m ³)	Minimum Oil Storage Capacity (gal)/(L)
CDS2015-4	0.9(0.7)	61(232)
CDS2015-5	1.5(1.1)	83(313)
CDS2020-5	1.5(1.1)	99(376)
CDS2025-5	1.5(1.1)	116(439)
CDS3020-6	2.1 (1.6)	184(696)
CDS3025-6	2.1(1.6)	210(795)
CDS3030-6	2.1 (1.6)	236(895)
CDS3035-6	2.1 (1.6)	263(994)
CDS3535-7	2.9(2.2)	377(1426)
CDS4030-8	5.6(4.3)	426(1612)
CDS4040-8	5.6 (4.3)	520(1970)
CDS4045-8	5.6 (4.3)	568(2149)
CDS5640-10	8.7(6.7)	758(2869)
CDS5653-10	8.7(6.7)	965(3652)
CDS5668-10	8.7(6.7)	1172(4435)
CDS5678-10	8.7(6.7)	1309(4956)
CDS7070-DV	3.6(2.8)	914 (3459)
CDS10060-DV	5.0 (3.8)	792 (2997)
CDS10080-DV	5.0 (3.8)	1057 (4000)
CDS100100-DV	5.0 (3.8)	1320 (4996)

TABLE 1 Storm Water Treatment Device Storage Capacities

END OF SECTION

CDS2015-4-C DESIGN NOTES

CONFIGURATIONS MAY BE COMBINED TO SUIT SITE REQUIREMENTS.
CONFIGURATION DESCRIPTION
GRATED INLET ONLY (NO INLET PIPE)
GRATED INLET WITH INLET PIPE OR PIPES
CURB INLET ONLY (NO INLET PIPE)
CURB INLET WITH INLET PIPE OR PIPES
SEPARATE OIL BAFFLE (SINGLE INLET PIPE REQUIRED FOR THIS CON
SEDIMENT WEIR FOR NJDEP / NJCAT CONFORMING UNITS

(DIAMETER VARIES) N.T.S.

GENERAL NOTES

- 1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE.
- 2. DIMENSIONS MARKED WITH () ARE REFERENCE DIMENSIONS. ACTUAL DIMENSIONS MAY VARY. SOLUTIONS LLC REPRESENTATIVE. www.contechES.com
- AT, OR BELOW, THE OUTLET PIPE INVERT ELEVATION. ENGINEER OF RECORD TO CONFIRM ACTUAL GROUNDWATER ELEVATION. 6. PVC HYDRAULIC SHEAR PLATE IS PLACED ON SHELF AT BOTTOM OF SCREEN CYLINDER. REMOVE AND REPLACE AS NECESSARY DURING MAINTENANCE CLEANING.

INSTALLATION NOTES

- A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE SPECIFIED BY ENGINEER OF RECORD.
- CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE CDS MANHOLE STRUCTURE В. (LIFTING CLUTCHES PROVIDED).
- CONTRACTOR TO ADD JOINT SEALANT BETWEEN ALL STRUCTURE SECTIONS, AND ASSEMBLE STRUCTURE. C.
- D. CONTRACTOR TO PROVIDE, INSTALL, AND GROUT PIPES. MATCH PIPE INVERTS WITH ELEVATIONS SHOWN.
- E. CONTRACTOR TO TAKE APPROPRIATE MEASURES TO ASSURE UNIT IS WATER TIGHT, HOLDING WATER TO FLOWLINE INVERT MINIMUM. IT IS SUGGESTED THAT ALL JOINTS BELOW PIPE INVERTS ARE GROUTED.

NATE CONFIGURATIONS ARE AVAILABLE AND ARE LISTED BELOW. SOME

ONFIGURATION)

SITE SPECIFIC DATA REQUIREMENTS					
STRUCTURE ID					
WATER QUALITY	FLOW RAT	E (0	CFS OR L/s)		*
PEAK FLOW RAT	E (CFS OR I	_/s)			*
RETURN PERIOD	OF PEAK F	LO	W (YRS)		*
SCREEN APERTL	JRE (2400 C	R 4	700)		*
		_			1
PIPE DATA:	I.E.	n	MATERIAL	D	IAMETER
INLET PIPE 1	*		*		*
INLET PIPE 2	*		*		*
OUTLET PIPE	*		*		*
RIM ELEVATION					*
ANTI-FLOTATION	BALLAST		WIDTH		HEIGHT
NOTES/SPECIAL REQUIREMENTS:					
* PER ENGINEER OF RECORD					

STRUCTURE ID					
WATER QUALITY	FLOW RAT	Έ (0	CFS OR L/s)		*
PEAK FLOW RAT	E (CFS OR I	L/s)			*
RETURN PERIOD	OF PEAK F	LO	W (YRS)		*
SCREEN APERTU	JRE (2400 C)R 4	700)		*
				_	
PIPE DATA:	I.E.		MATERIAL	D	AMETER
INLET PIPE 1	*		*		*
INLET PIPE 2	*		*		*
OUTLET PIPE	*		*		*
		·			
RIM ELEVATION					*
ANTI-FLOTATION BALLAST WIDTH					HEIGHT
* *					
NOTES/SPECIAL REQUIREMENTS:					

3. FOR FABRICATION DRAWINGS WITH DETAILED STRUCTURE DIMENSIONS AND WEIGHTS, PLEASE CONTACT YOUR CONTECH ENGINEERED

4. CDS WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS DRAWING. 5. STRUCTURE SHALL MEET AASHTO HS20 AND CASTINGS SHALL MEET HS20 (AASHTO M 306) LOAD RATING, ASSUMING GROUNDWATER ELEVATION

CDS2015-4-C

INLINE CDS

STANDARD DETAIL

CDS[®] Hydrodynamic Separator

The experts you need to solve your stormwater management challenges

Contech is the leader in stormwater management solutions, helping engineers, contractors and owners with infrastructure and land development projects throughout North America.

With our responsive team of stormwater experts, local regulatory expertise and flexible solutions, Contech is the trusted partner you can count on for stormwater management solutions.

Your Contech Team

STORMWATER CONSULTANT

It's my job to recommend the best solution to meet permitting requirements.

STORMWATER DESIGN ENGINEER

I work with consultants to design the best approved solution to meet your project's needs.

REGULATORY MANAGER

I understand the local stormwater regulations and what solutions will be approved.

SALES ENGINEER

I make sure our solutions meet the needs of the contractor during construction.

Contech is your partner in stormwater management solutions

Unique screening technology for stormwater runoff – CDS[®]

The CDS hydrodynamic separator uses swirl concentration and continuous deflective separation to screen, separate and trap trash, debris, sediment, and hydrocarbons from stormwater runoff.

At the heart of the CDS system is a unique screening technology used to capture and retain trash and debris. The screen face is louvered so that it is smooth in the downstream direction. The effect created is called "Continuous Deflective Separation." The power of the incoming flow is harnessed to continually shear debris off the screen and to direct trash and sediment toward the center of the separation cylinder. This results in a screen that is self-cleaning and provides 100% removal of floatables and neutrally buoyant material debris 4.7 mm or larger, without blinding.

CDS is used to meet trash Total Maximum Daily Load (TMDL) requirements, for stormwater quality control, inlet and outlet pollution control, and as pretreatment for filtration, detention/infiltration, bioretention, rainwater harvesting systems, and a variety of green infrastructure practices.

CDS® Features and Benefits

FEATURE	BENEFIT
Captures and retains 100% of floatables and neutrally buoyant debris 4.7mm or larger	Superior pollutant removal
Self-cleaning screen	Ease of maintenance
Isolated storage sump eliminates scour potential	Excellent pollutant retention
Internal bypass	Eliminates the need for additional structures
Multiple pipe inlets and 90-180° angles	Design flexibility
Clear access to sump and stored pollutants	Fast, easy maintenance

APPLICATION TIPS

- Because of its internal peak bypass weirs, CDS systems can provide cost savings by eliminating the need for additional structures.
- Pretreating detention, infiltration, and green infrastructure practices with CDS can protect downstream structures and provide for easy maintenance.
- The CDS an ideal solution for retrofit applications due to its compact footprint and configuration flexibility.

The CDS® Screen

A fundamentally different approach to trash control ...

Traditional approaches to trash control typically involve "direct screening" that can easily become clogged, as trash is pinned to the screen as water passes through. Clogged screens can lead to flooding as water backs up. The design of the CDS screen is fundamentally different. Flow is introduced to the screen face which is louvered so that it is smooth in the downstream direction. The effect created is called "Continuous Deflective Separation." The power of the incoming flow is harnessed to continually shear debris off the screen and to direct trash and sediment toward the center of the separation cylinder.

Setting new standards in Stormwater Treatment

CDS® Design Configuration

Why use traditional stormwater design when ONE system can do it all ...

The CDS effectively treats stormwater runoff while reducing the number of structures on your site. Inline, offline, grate inlet, and drop inlet configurations available. Internal and external peak bypass options also available.

A Traditional Stormwater Treatment Site Design would require several structures on your site. With CDS, one system can do it all!

CDS® Advantages

- Grate inlet option available
- Internal bypass weir
- Accepts multiple inlets at a variety of angles
- Advanced hydrodynamic separator
- Captures and retains 100% of floatables and neutrally buoyant debris 4.7 mm or larger
- Indirect screening capability keeps screen from clogging
- Retention of all captured pollutants, even at high flows
- Performance verified by NJCAT, WA Ecology, and ETV Canada

Learn More: www.ContechES.com/cds

CDS® Applications

CDS is commonly used in the following stormwater applications:

- · Stormwater quality control trash, debris, sediment, and hydrocarbon removal
- Urban retrofit and redevelopment
- Inlet and outlet protection
- Pretreatment for filtration, detention/infiltration, bioretention, rainwater harvesting systems, and Low Impact Development designs

CDS[®] provides trash control

CDS® pretreats a bioswale

Select CDS[®] Certifications and Verifications

CDS has been verified by some of the most stringent stormwater technology evaluation organizations in North America, including:

- Washington State Department of Ecology (GULD) Pretreatment
- New Jersey Department of Environmental Protection (NJDEP)
- Canadian Environmental Technology Verification (ETV)
- California Statewide Trash Amendments Full Capture System Certified*

*The CDS System has been certified by the California State Water Resources Control Board as a Full Capture System provided that it is sized to treat the peak flow rate from the region specific 1-year, 1-hour design storm, or the peak flow capacity of the corresponding storm drain, whichever is less.

Save time, space and money with CDS

Select a cost-effective and easy-to-access treatment system ...

Systems vary in their maintenance needs, and the selection of a cost-effective and easy-to-access treatment system can mean a huge difference in maintenance expenses for years to come.

A CDS unit is designed to minimize maintenance and make it as easy and inexpensive as possible to keep our systems working properly.

INSPECTION

Inspection is the key to effective maintenance. Pollutant deposition and transport may vary from year to year and site to site. Semi-annual inspections will help ensure that the system is cleaned out at the appropriate time. Inspections should be performed more frequently where site conditions may cause rapid accumulation of pollutants.

RECOMMENDATIONS FOR CDS MAINTENANCE

Most CDS® units can easily be cleaned within thirty minutes.

The recommended cleanout of solids within the CDS unit's sump should occur at 75% of the sump capacity. Access to the CDS unit is typically achieved through two manhole access covers – one allows inspection and cleanout of the separation chamber and sump, and another allows inspection and cleanout of sediment captured and retained behind the screen. A vacuum truck is recommended for cleanout of the CDS unit and can be easily accomplished in less than 30 minutes for most installations.

Quickly prepare designs for estimates and project meetings ...

- Multiple sizing methods available.
- Site-specific questions ensure the selected unit will comply with site constraints.
- Multiple treatment options may be available based on regulations and site parameters.
- Follow up reports contain a site-specific design, sizing summary, standard detail, and specification.

Learn More: www.ContechES.com/dyohds

A partner

STORMWATER SOLUTIONS

Few companies offer the wide range of highquality stormwater resources you can find with us — state-of-the-art products, decades of expertise, and all the maintenance support you need to operate your system cost-effectively.

THE CONTECH WAY

Contech® Engineered Solutions provides innovative, cost-effective site solutions to engineers, contractors, and developers on projects across North America. Our portfolio includes bridges, drainage, erosion control, retaining wall, sanitary sewer and stormwater management products.

TAKE THE NEXT STEP

For more information: www.ContechES.com

Get social with us: fin S

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.

CDS Guide Operation, Design, Performance and Maintenance

CDS®

Using patented continuous deflective separation technology, the CDS system screens, separates and traps debris, sediment, and oil and grease from stormwater runoff. The indirect screening capability of the system allows for 100% removal of floatables and neutrally buoyant material without blinding. Flow and screening controls physically separate captured solids, and minimize the re-suspension and release of previously trapped pollutants. Inline units can treat up to 6 cfs, and internally bypass flows in excess of 50 cfs (1416 L/s). Available precast or cast-in-place, offline units can treat flows from 1 to 300 cfs (28.3 to 8495 L/s). The pollutant removal capacity of the CDS system has been proven in lab and field testing.

Operation Overview

Stormwater enters the diversion chamber where the diversion weir guides the flow into the unit's separation chamber and pollutants are removed from the flow. All flows up to the system's treatment design capacity enter the separation chamber and are treated.

Swirl concentration and screen deflection force floatables and solids to the center of the separation chamber where 100% of floatables and neutrally buoyant debris larger than the screen apertures are trapped.

Stormwater then moves through the separation screen, under the oil baffle and exits the system. The separation screen remains clog free due to continuous deflection.

During the flow events exceeding the treatment design capacity, the diversion weir bypasses excessive flows around the separation chamber, so captured pollutants are retained in the separation cylinder.

Design Basics

There are three primary methods of sizing a CDS system. The Water Quality Flow Rate Method determines which model size provides the desired removal efficiency at a given flow rate for a defined particle size. The Rational Rainfall Method[™] or the and Probabilistic Method is used when a specific removal efficiency of the net annual sediment load is required.

Typically in the Unites States, CDS systems are designed to achieve an 80% annual solids load reduction based on lab generated performance curves for a gradation with an average particle size (d50) of 125 microns (μ m). For some regulatory environments, CDS systems can also be designed to achieve an 80% annual solids load reduction based on an average particle size (d50) of 75 microns (μ m) or 50 microns (μ m).

Water Quality Flow Rate Method

In some cases, regulations require that a specific treatment rate, often referred to as the water quality design flow (WQQ), be treated. This WQQ represents the peak flow rate from either an event with a specific recurrence interval, e.g. the six-month storm, or a water quality depth, e.g. 1/2-inch (13 mm) of rainfall.

The CDS is designed to treat all flows up to the WQQ. At influent rates higher than the WQQ, the diversion weir will direct most flow exceeding the WQQ around the separation chamber. This allows removal efficiency to remain relatively constant in the separation chamber and eliminates the risk of washout during bypass flows regardless of influent flow rates.

Treatment flow rates are defined as the rate at which the CDS will remove a specific gradation of sediment at a specific removal efficiency. Therefore the treatment flow rate is variable, based on the gradation and removal efficiency specified by the design engineer.

Rational Rainfall Method™

Differences in local climate, topography and scale make every site hydraulically unique. It is important to take these factors into consideration when estimating the long-term performance of any stormwater treatment system. The Rational Rainfall Method combines site-specific information with laboratory generated performance data, and local historical precipitation records to estimate removal efficiencies as accurately as possible.

Short duration rain gauge records from across the United States and Canada were analyzed to determine the percent of the total annual rainfall that fell at a range of intensities. US stations' depths were totaled every 15 minutes, or hourly, and recorded in 0.01-inch increments. Depths were recorded hourly with 1-mm resolution at Canadian stations. One trend was consistent at all sites; the vast majority of precipitation fell at low intensities and high intensity storms contributed relatively little to the total annual depth.

These intensities, along with the total drainage area and runoff coefficient for each specific site, are translated into flow rates using the Rational Rainfall Method. Since most sites are relatively small and highly impervious, the Rational Rainfall Method is appropriate. Based on the runoff flow rates calculated for each intensity, operating rates within a proposed CDS system are determined. Performance efficiency curve determined from full scale laboratory tests on defined sediment PSDs is applied to calculate solids removal efficiency. The relative removal efficiency at each operating rate is added to produce a net annual pollutant removal efficiency estimate.

Probabilistic Rational Method

The Probabilistic Rational Method is a sizing program Contech developed to estimate a net annual sediment load reduction for a particular CDS model based on site size, site runoff coefficient, regional rainfall intensity distribution, and anticipated pollutant characteristics.

The Probabilistic Method is an extension of the Rational Method used to estimate peak discharge rates generated by storm events of varying statistical return frequencies (e.g. 2-year storm event). Under the Rational Method, an adjustment factor is used to adjust the runoff coefficient estimated for the 10-year event, correlating a known hydrologic parameter with the target storm event. The rainfall intensities vary depending on the return frequency of the storm event under consideration. In general, these two frequency dependent parameters (rainfall intensity and runoff coefficient) increase as the return frequency increases while the drainage area remains constant.

These intensities, along with the total drainage area and runoff coefficient for each specific site, are translated into flow rates using the Rational Method. Since most sites are relatively small and highly impervious, the Rational Method is appropriate. Based on the runoff flow rates calculated for each intensity, operating rates within a proposed CDS are determined. Performance efficiency curve on defined sediment PSDs is applied to calculate solids removal efficiency. The relative removal efficiency at each operating rate is added to produce a net annual pollutant removal efficiency estimate.

Treatment Flow Rate

The inlet throat area is sized to ensure that the WQQ passes through the separation chamber at a water surface elevation equal to the crest of the diversion weir. The diversion weir bypasses excessive flows around the separation chamber, thus preventing re-suspension or re-entrainment of previously captured particles.

Hydraulic Capacity

The hydraulic capacity of a CDS system is determined by the length and height of the diversion weir and by the maximum allowable head in the system. Typical configurations allow hydraulic capacities of up to ten times the treatment flow rate. The crest of the diversion weir may be lowered and the inlet throat may be widened to increase the capacity of the system at a given water surface elevation. The unit is designed to meet project specific hydraulic requirements.

Performance

Full-Scale Laboratory Test Results

A full-scale CDS system (Model CDS2020-5B) was tested at the facility of University of Florida, Gainesville, FL. This CDS unit was evaluated under controlled laboratory conditions of influent flow rate and addition of sediment.

Two different gradations of silica sand material (UF Sediment & OK-110) were used in the CDS performance evaluation. The particle size distributions (PSDs) of the test materials were analyzed using standard method "Gradation ASTM D-422 "Standard Test Method for Particle-Size Analysis of Soils" by a certified laboratory.

UF Sediment is a mixture of three different products produced by the U.S. Silica Company: "Sil-Co-Sil 106", "#1 DRY" and "20/40 Oil Frac". Particle size distribution analysis shows that the UF Sediment has a very fine gradation (d50 = 20 to 30 μ m) covering a wide size range (Coefficient of Uniformity, C averaged at 10.6). In comparison with the hypothetical TSS gradation specified in the NJDEP (New Jersey Department of Environmental Protection) and NJCAT (New Jersey Corporation for Advanced Technology) protocol for lab testing, the UF Sediment covers a similar range of particle size but with a finer d50 (d50 for NJDEP is approximately 50 μ m) (NJDEP, 2003).

The OK-110 silica sand is a commercial product of U.S. Silica Sand. The particle size distribution analysis of this material, also included in Figure 1, shows that 99.9% of the OK-110 sand is finer than 250 microns, with a mean particle size (d50) of 106 microns. The PSDs for the test material are shown in Figure 1.

Figure 1. Particle size distributions

Tests were conducted to quantify the performance of a specific CDS unit (1.1 cfs (31.3-L/s) design capacity) at various flow rates, ranging from 1% up to 125% of the treatment design capacity of the unit, using the 2400 micron screen. All tests were conducted with controlled influent concentrations of approximately 200 mg/L. Effluent samples were taken at equal time intervals across the entire duration of each test run. These samples were then processed with a Dekaport Cone sample splitter to obtain representative sub-samples for Suspended Sediment Concentration (SSC) testing using ASTM D3977-97 "Standard Test Methods for Determining Sediment Concentration in Water Samples", and particle size distribution analysis.

Results and Modeling

Based on the data from the University of Florida, a performance model was developed for the CDS system. A regression analysis was used to develop a fitting curve representative of the scattered data points at various design flow rates. This model, which demonstrated good agreement with the laboratory data, can then be used to predict CDS system performance with respect to SSC removal for any particle size gradation, assuming the particles are inorganic sandy-silt. Figure 2 shows CDS predictive performance for two typical particle size gradations (NJCAT gradation and OK-110 sand) as a function of operating rate.

Figure 2. CDS stormwater treatment predictive performance for various particle gradations as a function of operating rate.

Many regulatory jurisdictions set a performance standard for hydrodynamic devices by stating that the devices shall be capable of achieving an 80% removal efficiency for particles having a mean particle size (d50) of 125 microns (e.g. Washington State Department of Ecology — WASDOE - 2008). The model can be used to calculate the expected performance of such a PSD (shown in Figure 3). The model indicates (Figure 4) that the CDS system with 2400 micron screen achieves approximately 80% removal at the design (100%) flow rate, for this particle size distribution (d50 = 125 μ m).

Figure 3. WASDOE PSD

Figure 4. Modeled performance for WASDOE PSD.

Maintenance

The CDS system should be inspected at regular intervals and maintained when necessary to ensure optimum performance. The rate at which the system collects pollutants will depend more heavily on site activities than the size of the unit. For example, unstable soils or heavy winter sanding will cause the grit chamber to fill more quickly but regular sweeping of paved surfaces will slow accumulation.

Inspection

Inspection is the key to effective maintenance and is easily performed. Pollutant transport and deposition may vary from year to year and regular inspections will help ensure that the system is cleaned out at the appropriate time. At a minimum, inspections should be performed twice per year (e.g. spring and fall) however more frequent inspections may be necessary in climates where winter sanding operations may lead to rapid accumulations, or in equipment washdown areas. Installations should also be inspected more frequently where excessive amounts of trash are expected.

The visual inspection should ascertain that the system components are in working order and that there are no blockages or obstructions in the inlet and separation screen. The inspection should also quantify the accumulation of hydrocarbons, trash, and sediment in the system. Measuring pollutant accumulation can be done with a calibrated dipstick, tape measure or other measuring instrument. If absorbent material is used for enhanced removal of hydrocarbons, the level of discoloration of the sorbent material should also be identified

during inspection. It is useful and often required as part of an operating permit to keep a record of each inspection. A simple form for doing so is provided.

Access to the CDS unit is typically achieved through two manhole access covers. One opening allows for inspection and cleanout of the separation chamber (cylinder and screen) and isolated sump. The other allows for inspection and cleanout of sediment captured and retained outside the screen. For deep units, a single manhole access point would allows both sump cleanout and access outside the screen.

The CDS system should be cleaned when the level of sediment has reached 75% of capacity in the isolated sump or when an appreciable level of hydrocarbons and trash has accumulated. If absorbent material is used, it should be replaced when significant discoloration has occurred. Performance will not be impacted until 100% of the sump capacity is exceeded however it is recommended that the system be cleaned prior to that for easier removal of sediment. The level of sediment is easily determined by measuring from finished grade down to the top of the sediment pile. To avoid underestimating the level of sediment in the chamber, the measuring device must be lowered to the top of the sediment pile carefully. Particles at the top of the pile typically offer less resistance to the end of the rod than consolidated particles toward the bottom of the pile. Once this measurement is recorded, it should be compared to the as-built drawing for the unit to determine weather the height of the sediment pile off the bottom of the sump floor exceeds 75% of the total height of isolated sump.

Cleaning

Cleaning of a CDS systems should be done during dry weather conditions when no flow is entering the system. The use of a vacuum truck is generally the most effective and convenient method of removing pollutants from the system. Simply remove the manhole covers and insert the vacuum hose into the sump. The system should be completely drained down and the sump fully evacuated of sediment. The area outside the screen should also be cleaned out if pollutant build-up exists in this area.

In installations where the risk of petroleum spills is small, liquid contaminants may not accumulate as quickly as sediment. However, the system should be cleaned out immediately in the event of an oil or gasoline spill. Motor oil and other hydrocarbons that accumulate on a more routine basis should be removed when an appreciable layer has been captured. To remove these pollutants, it may be preferable to use absorbent pads since they are usually less expensive to dispose than the oil/water emulsion that may be created by vacuuming the oily layer. Trash and debris can be netted out to separate it from the other pollutants. The screen should be cleaned to ensure it is free of trash and debris.

Manhole covers should be securely seated following cleaning activities to prevent leakage of runoff into the system from above and also to ensure that proper safety precautions have been followed. Confined space entry procedures need to be followed if physical access is required. Disposal of all material removed from the CDS system should be done in accordance with local regulations. In many jurisdictions, disposal of the sediments may be handled in the same manner as the disposal of sediments removed from catch basins or deep sump manholes. Check your local regulations for specific requirements on disposal.

CDS Model	Dian	neter	Distance from to Top of Se	Water Surface diment Pile	Sediment Storage Capacity		
	ft	m	ft	m	У³	m³	
CDS1515	3	0.9	3.0	0.9	0.5	0.4	
CDS2015	4	1.2	3.0	0.9	0.9	0.7	
CDS2015	5	1.5	3.0	0.9	1.3	1.0	
CDS2020	5	1.5	3.5	1.1	1.3	1.0	
CDS2025	5	1.5	4.0	1.2	1.3	1.0	
CDS3020	6	1.8	4.0	1.2	2.1	1.6	
CDS3025	6	1.8	4.0	1.2	2.1	1.6	
CDS3030	6	1.8	4.6	1.4	2.1	1.6	
CDS3035	6	1.8	5.0	1.5	2.1	1.6	
CDS4030	8	2.4	4.6	1.4	5.6	4.3	
CDS4040	8	2.4	5.7	1.7	5.6	4.3	
CDS4045	8	2.4	6.2	1.9	5.6	4.3	
CDS5640	10	3.0	6.3	1.9	8.7	6.7	
CDS5653	10	3.0	7.7	2.3	8.7	6.7	
CDS5668	10	3.0	9.3	2.8	8.7	6.7	
CDS5678	10	3.0	10.3	3.1	8.7	6.7	

Table 1: CDS Maintenance Indicators and Sediment Storage Capacities

Note: To avoid underestimating the volume of sediment in the chamber, carefully lower the measuring device to the top of the sediment pile. Finer silty particles at the top of the pile may be more difficult to feel with a measuring stick. These finer particles typically offer less resistance to the end of the rod than larger particles toward the bottom of the pile.

CDS Inspection & Maintenance Log

CDS Mode	l:		Lo	cation:	
Date	Water depth to sediment ¹	Floatable Layer Thickness ²	Describe Maintenance Performed	Maintenance Personnel	Comments

1. The water depth to sediment is determined by taking two measurements with a stadia rod: one measurement from the manhole opening to the top of the sediment pile and the other from the manhole opening to the water surface. If the difference between these measurements is less than the values listed in table 1 the system should be cleaned out. Note: to avoid underestimating the volume of sediment in the chamber, the measuring device must be carefully lowered to the top of the sediment pile.

2. For optimum performance, the system should be cleaned out when the floating hydrocarbon layer accumulates to an appreciable thickness. In the event of an oil spill, the system should be cleaned immediately.

SUPPORT

- Drawings and specifications are available at www.ContechES.com.
- Site-specific design support is available from our engineers.

©2017 Contech Engineered Solutions LLC, a QUIKRETE Company

Contech Engineered Solutions provides site solutions for the civil engineering industry. Contech's portfolio includes bridges, drainage, sanitary sewer, earth stabilization and stormwater treatment products. For information on other Contech division offerings, visit www.ContechES.com or call 800.338.1122

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.

The product(s) described may be protected by one or more of the following US patents: 5,322,629; 5,624,576; 5,707,527; 5,759,415; 5,788,848; 5,985,157; 6,027,639; 6,350,374; 6,406,218; 6,641,720; 6,511,595; 6,649,048; 6,991,114; 6,998,038; 7,186,058; 7,296,692; 7,297,266; related foreign patents or other patents pending.

Rational Method Pipe-to-Pipe Calculations

STORM SEWER SYSTEM DESIGN (25 yr. Design Storm) THE ENGINE YARD 40 ALPINE ROW FRANKLIN, MA LDG PROJ. # 1880.00

EGMEN	TIME TO	TIME IN	ACCUMUL	RUNOFF	AREA	SUM OF	ACCUMUL	RAINFALL	SYSTEM	PIPE	PIPE (ft)	SLOPE	Vfull	Qfull	ROUGH.	CAPACITY
TYPE	INLET	PIPE	TIME	COEFF "C"	(acres)	AxC	AxC	Ι	Q (cfs)	SIZE (in)	LENGTH	(ft/ft)	(fps)	(cfs)	COEFF. "n"	CHECK
Ι	5.00	0.02	5.00	0.90	0.46											
				0.30	0.00											
				0.20	0.17											
						0.45	0.45	6.00	2.69	18	18	0.0400	14.05	24.83	0.0110	WITHIN CAPACITY
Ι	5.00	0.25	5.00	0.90	0.12											
				0.30	0.00											
				0.20	0.05											
						0.12	0.12	6.00	0.71	8	62	0.0100	4.09	1.43	0.0110	WITHIN CAPACITY
C	5.00	0.05	5.25	0.90	0.58											
				0.30	0.00											
				0.20	0.23									-	4	
		-				0.57	1.13	6.00	6.81	18	40	0.0400	14.05	24.83	0.0110	WITHIN CAPACITY

Existing Conditions – Subcatchments

Proposed Conditions – Subcatchments

HydroCAD Analysis

Existing & Proposed Conditions – 2 Year Storm

Analysis	
Prepared by {enter your company name here}	Printed 6/22/2021
HydroCAD® 10.00-26 s/n 04015 © 2020 HydroCAD Software Solutions LLC	Page 2

Project Notes

Rainfall events imported from "Analysis 12-6-2017.hcp"

Analysis Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 04015 © 2020 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Printed 6/22/2021

Page 3

Area (acres)	CN	Description (subcatchment-numbers)
0.284	39	>75% Grass cover, Good, HSG A (4S)
0.095	61	>75% Grass cover, Good, HSG B (1S)
0.497	98	Paved parking, HSG A (4S)
0.943	98	Paved parking, Roof, HSG B (1S)
0.738	98	Paved roads w/curbs & sewers, HSG A (7S, 8S)
0.421	98	Roofs, HSG A (1S, 4S)
0.119	98	Unconnected pavement, HSG A (4S)
0.281	98	Unconnected roofs, HSG A (6S)
3.378	92	TOTAL AREA

Analysis	
Prepared by {enter your company name here}	Printed 6/22/2021
HydroCAD® 10.00-26 s/n 04015 © 2020 HydroCAD Software Solutions LLC	Page 4
	-

Soil Listing (all nodes)

Area (acres)	Soil Group	Subcatchment Numbers
2.340	HSG A	1S, 4S, 6S, 7S, 8S
1.038	HSG B	1S
0.000	HSG C	
0.000	HSG D	
0.000	Other	
3.378		TOTAL AREA

pared by roCAD® 10	{enter you 0.00-26 s/n (r company 04015 © 202	name here	e}) Software So	olutions LLC	Printed 6/22	/2021 age <u>5</u>
			Ground (Covers (all	nodes)		
HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
0.284	0.095	0.000	0.000	0.000	0.379	>75% Grass cover, Good	1S,
							4S
0.497	0.000	0.000	0.000	0.000	0.497	Paved parking	4S
0.000	0.943	0.000	0.000	0.000	0.943	Paved parking, Roof	1S
0.738	0.000	0.000	0.000	0.000	0.738	Paved roads w/curbs & sewers	7S,
							8S
0.421	0.000	0.000	0.000	0.000	0.421	Roofs	1S,
							4S
0.119	0.000	0.000	0.000	0.000	0.119	Unconnected pavement	4S
0.281	0.000	0.000	0.000	0.000	0.281	Unconnected roofs	6S
2.340	1.038	0.000	0.000	0.000	3.378	TOTAL AREA	

Analysis Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 04015 © 2020 HydroCAD Software Solutions LLC	Printed 6/22/2021 Page 6
Pipe Listing (all nodes)	

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
1	9P	300.00	300.00	10.0	0.0000	0.013	8.0	0.0	0.0
2	12P	300.00	300.00	10.0	0.0000	0.013	8.0	0.0	0.0

Analysis		borol	Type III 24-h	r 2-Year Rainfall=3.22"
HydroCAD® 10.00-26 s/n 04	1015 © 2020 Hydro	CAD Software Solutio	ns LLC	Printed 0/22/2021 Page 7
F Reach routin	Time span=5.00- Runoff by SCS TR- ng by Stor-Ind+Tra	-20.00 hrs, dt=0.05 h -20 method, UH=SC ans method - Pond	rrs, 301 points S, Weighted-CN routing by Stor-I	nd method
Subcatchment 1S: Existin	ng Site	Runoff Area=57,500 To	sf 92.80% Imper =6.0 min CN=95	vious Runoff Depth>2.52" Runoff=3.81 cfs 0.277 af
Subcatchment 4S: Propo	sed	Runoff Area=45,270 To	sf 72.71% Imper =6.0 min CN=82	vious Runoff Depth>1.44" Runoff=1.85 cfs 0.125 af
Subcatchment 6S: PROP	BLDG	Runoff Area=12,230 s To	sf 100.00% Imper =6.0 min CN=98	vious Runoff Depth>2.79" Runoff=0.86 cfs 0.065 af
Subcatchment 7S: STRE	ET	Runoff Area=16,070 s To	sf 100.00% Imper =6.0 min CN=98	vious Runoff Depth>2.79" Runoff=1.13 cfs 0.086 af
Subcatchment 8S: STRE	ET	Runoff Area=16,070 s To	sf 100.00% Imper =6.0 min CN=98	vious Runoff Depth>2.79" Runoff=1.13 cfs 0.086 af
Reach 3R: Outlet				Inflow=4.93 cfs 0.363 af Outflow=4.93 cfs 0.363 af
Reach 5R: (new Reach)				Inflow=3.72 cfs 0.230 af Outflow=3.72 cfs 0.230 af
Pond 9P: IP1	Discarded=0.03 cl	Peak Elev=300 s 0.026 af Primary=	.84' Storage=53 c 0.81 cfs 0.039 af	f Inflow=0.86 cfs 0.065 af Outflow=0.84 cfs 0.065 af
Pond 12P: IP1	Discarded=0.03 cl	Peak Elev=300 fs 0.011 af Primary=	.79' Storage=59 c 0.77 cfs 0.028 af	f Inflow=0.81 cfs 0.039 af Outflow=0.80 cfs 0.039 af
Pond 13P: IP1	Discarded=0.03 ct	Peak Elev=302.0 fs 0.009 af Primary=	09' Storage=157 c 0.76 cfs 0.020 af	f Inflow=0.77 cfs 0.028 af Outflow=0.79 cfs 0.028 af

 Total Runoff Area = 3.378 ac
 Runoff Volume = 0.639 af
 Average Runoff Depth = 2.27"

 11.21% Pervious = 0.379 ac
 88.79% Impervious = 2.999 ac

Analy Prepa HydroC	/S re CAL	is d by { D® 10.	ente	er you 6 s/n	ur com 04015	pany © 202	name 0 Hyd	e her roCAE	e} D Softv	ware So	olutior	Тур Is LLC	e III :	24-hr	2-Ye	e <i>ar Ra</i> Printe	ainfall=3.22" d 6/22/2021 Page 8
					Sum	mary	/ for	Sub	catcl	hmen	t 1S:	Exis	sting	Site			
Runoff	F	=		3.81	cfs @	12.0	9 hrs,	Volu	ıme=		0.2	77 af,	Dep	th> 2	52"		
Runoff Type I	f by II 2	y SCS 24-hr	5 TR∙ 2-Y€	-20 m ear Ra	ethod, ainfall=	UH=S 3.22"	SCS, V	Veigh	nted-C	N, Tin	ne Sp	an= 5	.00-2	0.00 h	rs, dt=	= 0.05	hrs
	A	rea (s	f)	CN	Desc	ription											
		4,14	0	61	>75%	Gras	s cove	er, Go	ood, H	ISG B							
*		41,07 12 29	0	98 98	Pave	d park	ing, R ≥ ∆	loof, I	ISG	3							
		57,50	0	95	Weig	nted A	verag	e									
		4,14	0		7.20%	6 Perv	vious 7	Area									
		53,36	0		92.80	% Imp	pervio	us Ar	ea								
Т	с	Leng	lth	Slop	e Ve	locity	Cap	acity	Des	criptio	n						
(min	I)	(fee	et)	(ft/1	ft) (fl	/sec)		(cfs)									
6.	0								Dire	ectEn	try,						
						Su	bcat	chm	ent [•]	IS: E	xistiı	na Si	ite				
								Hydro	graph	-		5					
	6		-			1		1	1				1		1	1	
4	4-	1	1			-+	1	3.81	cfs						+ 	 	Runoff
	1		-			I I			T				Ту	be II	24-	hr	
	-						1			1	2-Y	ear I	Rair	fall	=3.2	2"	
	3	/		<u>-</u>				<u>+</u>		R	unc	off Δ	rea	-57	500	cf	
·						į.							lum	-01, 0	277	of	
s)	1					1				ĸu		VO		e=0.	211	ai	
v (ct		,				- <u> </u> 		+ +			κι	inot	t De	pth	>2.5	2"	
Flov	2-1					L L	1			-			T	c=6	.0 m	hin	
	-								K	1	1	1	1		CN=	95	
	-							4-1	4							 	
	1-*					Ì		I	H								
	-					j.											
				m	m	m	m			477		111	1				
(٥Ļ	<u>/////</u>			<u> </u>	10	· · · · · · · ·		·····				····		10		
	5	6		,	0 9	10	11	Time	13 hour:	14 s)	15	16	17	18	19	20	

Analysis Type III 24-hr 2-Year Rainfall=3.22" Prepared by {enter your company name here} Printed 6/22/2021 HydroCAD® 10.00-26 s/n.04015 © 2020 HydroCAD Software Solutions LLC Page 9	Analysis Type III 24-hr 2-Year Rainfall=3.22" Prepared by {enter your company name here} Printed 6/22/2021 HydroCAD® 10.00-26 s/n 04015 © 2020 HydroCAD Software Solutions LLC Page 10
Summary for Subcatchment 4S: Proposed	Summary for Subcatchment 6S: PROP BLDG
Runoff = 1.85 cfs @ 12.09 hrs, Volume= 0.125 af, Depth> 1.44" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.22"	Runoff = 0.86 cfs @ 12.09 hrs, Volume= 0.065 af, Depth> 2.79" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.22"
Area (s) CN Description 12,354 39 >75% Grass cover, Good, HSG A 21,655 98 Paved parking, HSG A 5,200 98 Unconnected pavement, HSG A 6,061 98 Roofs, HSG A 45,270 82 Weighted Average 12,354 27.29% Pervious Area 32,916 72.71% Impervious Area 5,200 15.80% Unconnected	Area (sr) Crv Description 12,230 98 Unconnected roofs, HSG A 12,230 100.00% Impervious Area 12,230 100.00% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) 6.0 Direct Entry,
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment 4S: Proposed	Subcatchment 6S: PROP BLDG Hydrograph
(9) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0	$ \begin{array}{c} $

Printed 6/22/2021

Page 12

Runoff

20

Analysis	Type III 24-hr 2-Year Rainfall=3.22"
Prepared by {enter your company name here}	Printed 6/22/2021
HydroCAD® 10.00-26 s/n 04015 © 2020 HydroCAD Software Solution	s LLC Page 13

Summary for Reach 3R: Outlet

Inflow Area	a =	1.689 ac, 9	4.37% Impe	ervious,	Inflow Depth	> 2.5	8" for 2-1	ear event
Inflow	=	4.93 cfs @	12.09 hrs,	Volume	= 0.3	63 af		
Outflow	=	4.93 cfs @	12.09 hrs,	Volume	= 0.3	63 af,	Atten= 0%,	Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Analysis	Type III 24-hr 2-Year Rainfall=3.22"
Prepared by {enter your company name here}	Printed 6/22/2021
HydroCAD® 10.00-26 s/n 04015 © 2020 HydroCAD Software Solutions	LLC Page 14

Summary for Reach 5R: (new Reach)

Inflow A	Area =	1.689 ac	, 83.21% Imp	ervious, I	nflow Depth >	1.6	64" for 2-1	ear ever	nt
Inflow	=	3.72 cfs (12.10 hrs, 	Volume=	0.230	af			
Outflov	v =	3.72 cfs (ā 12.10 hrs,	Volume=	0.230	af,	Atten= 0%,	Lag= 0.	0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

			Summary f	or Pond 9	P: IP1		
			••••••••••••••••••••••••••••••••••••••				
Inflow A	rea = 0.	281 ac,100. 36 cfs @ _1	00% Impervious, 2.09 hrs Volume	Inflow Dep	th > 2.79" 1 065 af	for 2-Year event	
Outflow	= 0.8	34 cfs @ 1	2.10 hrs, Volume	e= 0	.065 af, Atter	n= 2%, Lag= 0.9	min
Discard	ed = 0.0	03 cfs @ 1	2.10 hrs, Volume	e= 0	.026 af		
Primary	= 0.8	31 cfs @ 1	2.10 hrs, Volume	e= 0	.039 af		
Routina	by Stor-Ind m	ethod. Time	Span= 5.00-20.0	0 hrs. dt= 0	.05 hrs		
Peak El	ev= 300.84' @	2 12.10 hrs	Surf.Area= 154	sf Storage=	53 cf		
	0			0			
Plug-Flo	uu dataatiaa ti						
A .	ow detention til	me= 2.0 min	calculated for 0.	065 af (1009	% of inflow)		
Center-	of-Mass det. ti	me= 2.0 mir me= 1.6 mir	calculated for 0. (740.1 - 738.5)	065 af (1009)	% of inflow)		
Center- Volume	of-Mass det. til Invert	me= 2.0 mir me= 1.6 mir Avail.Sto	a calculated for 0. (740.1 - 738.5) rage Storage E	065 af (1009)) Description	% of inflow)		
Center- <u>Volume</u> #1	of-Mass det. til Invert 300.00'	me= 2.0 mir me= 1.6 mir <u>Avail.Sto</u> 3-	a calculated for 0. a (740.1 - 738.5) <u>rage Storage E</u> 42 cf 14.00'D x	065 af (1009) Description 6.00'H Vert	% of inflow) ical Cone/Cy	linder	
Center- <u>Volume</u> #1	of-Mass det. til Invert 300.00'	me= 2.0 mir me= 1.6 mir <u>Avail.Sto</u> 3 [,]	a calculated for 0. (740.1 - 738.5) rage Storage E 42 cf 14.00'D x 924 cf Ov	065 af (1009 0escription 6.00'H Vert erall - 69 cf f	% of inflow) ical Cone/Cy Embedded =	linder 854 cf x 40.0% \	/oids
Center- <u>Volume</u> #1 #2	Invert 300.00'	me= 2.0 mir me= 1.6 mir <u>Avail.Sto</u> 3.	a calculated for 0. a (740.1 - 738.5) rage Storage E 42 cf 14.00'D x 924 cf Ov 42 cf 3.00'D x (69 cf Ove	065 af (1009 <u>0</u> <u>6.00'H Verti</u> erall - 69 cf 1 <u>6.00'H Verti</u> <u>5.00'H Verti</u>	% of inflow) ical Cone/Cy Embedded = 1 ical Cone/Cyli all Thickness	linder 854 cf x 40.0% \ nder Inside #1 = 42 cf	/oids
Center- Volume #1 #2	of-Mass det. til Invert 300.00' 300.00'	me= 2.0 mir me= 1.6 mir <u>Avail.Sto</u> 3	a calculated for 0. (740.1 - 738.5) rage Storage E 42 cf 14.00'D x 924 cf Ove 69 cf Ove 84 cf Total Ava	065 af (1009) 0005 000'H Verti 6.00'H Verti 5.00'H Verti 13.00'H Verti 13.00'H Verti 14.00 Storage	% of inflow) ical Cone/Cy Embedded = i cal Cone/Cyli all Thickness	linder 854 cf x 40.0% \ nder Inside #1 = 42 cf	/oids
Center- Volume #1 #2	of-Mass det. tin <u>Invert</u> 300.00' 300.00'	me= 2.0 mir me= 1.6 mir <u>Avail.Sto</u> 3	a calculated for 0. (740.1 - 738.5) rage Storage E 42 cf 14.00'D x 924 cf Ov 42 cf 3.00'D x (69 cf Ove 84 cf Total Ava	065 af (1009 Description 6.00'H Vertion Fall - 69 of the factor 5.00'H Vertion rall - 5.0" Watching Storag	% of inflow) ical Cone/Cy Embedded = 1 cal Cone/Cyli all Thickness ie	linder 854 cf x 40.0% \ nder Inside #1 = 42 cf	/oids
Center- Volume #1 #2 Device	No detention in of-Mass det. tin 300.00' 300.00' Routing	me= 2.0 mir me= 1.6 mir <u>Avail.Sto</u> 3.	a calculated for 0. (740.1 - 738.5) rage Storage E 42 cf 14.00'D x 924 cf Ov 42 cf 3.00'D x (69 cf Ove 84 cf Total Ava Outlet Devices	065 af (1009) 6.00'H Verti erall - 69 cf I 5.00'H Vertio rall - 5.0" Wa ilable Storag	% of inflow) ical Cone/Cy Embedded = 1 cal Cone/Cyli all Thickness : Ie	linder 854 cf x 40.0% \ nder Inside #1 = 42 cf	/oids
Center- <u>Volume</u> #1 #2 <u>Device</u> #1	No detention in of-Mass det. tit 300.00' 300.00' <u>Routing</u> Primary	me= 2.0 mir me= 1.6 mir 3. 3. 3. <u>3.</u> 3. <u>3.</u> 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	a calculated for 0. (740.1 - 738.5) rage Storage E 42 cf 14.00'D x 924 cf Ov 42 cf 3.00'D x (69 cf Ove 84 cf Total Ava Outlet Devices 8.0" Round C	065 af (1009 Description 6.00'H Verti erall - 69 cf I 5.00'H Vertion rall - 5.0" Wa ilable Storag	% of inflow) ical Cone/Cy Embedded = 1 cal Cone/Cyli all Thickness je	linder 854 cf x 40.0% \ nder Inside #1 = 42 cf	/oids
Center- <u>Volume</u> #1 #2 <u>Device</u> #1	Routing Primary	me= 2.0 mir me= 1.6 mir 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	a calculated for 0. a (740.1 - 738.5) rage Storage E 42 cf 14.00'D x 924 cf Ov 42 cf 30'D x 6 69 cf Ove 84 cf Total Ava Outlet Devices 8.0" Round C L=10.0" CPP to the point	065 af (1009 Description 6.00'H Verti erall - 69 cf l 5.00'H Vertion rall - 5.0" Wa ilable Storage ulvert projecting, 1 projecting, 0	% of inflow) ical Cone/Cy Embedded = i al Cone/Cyli all Thickness e ho headwall,	linder 854 cf x 40.0% \ nder Inside #1 = 42 cf Ke= 0.900	/oids
Center- Volume #1 #2 Device #1	No detention in of-Mass det. tin 300.00' 300.00' <u>300.00'</u> <u>Routing</u> Primary	me= 2.0 mir me= 1.6 mir Avail.Sto 3 3 3 3 3 3 3 3 3 0 0.00'	a calculated for 0. (740.1 - 738.5) rage Storage E 42 cf 14.00'D x 924 cf Ov 42 cf 3.00'D x (69 cf Ove 84 cf Total Ava Outlet Devices 8.0" Round C L = 10.0' CPP, Inlet / Outlet Im = 0.013 Corrr	065 af (1009 065 af (1009 000'H Verti 6.00'H Verti arall - 69 cf 1 6.00'H Verti rall - 5.0" Wa ilable Storag ulvert projecting, n vert= 300.00 unated PE s	% of inflow) ical Cone/Cy Embedded = i cal Cone/Cylial Il Thickness ie no headwall, / 300.00' Sci modth identified	linder 854 cf x 40.0% \ nder Inside #1 = 42 cf Ke= 0.900 = 0.0000 '/' Cc= = Elow Area= 0	/oids 0.900
Volume #1 #2 Device #1 #2	No detention in of-Mass det. tii 300.00' 300.00' <u>300.00'</u> <u>Routing</u> Primary Discarded	me= 2.0 mir me= 1.6 mir Avail.Sto 3 3 3 <u>Invert</u> 300.00' 300.00'	a calculated for 0. (740.1 - 738.5) rage Storage E 42 cf 14.00'D x 924 cf Ov 42 cf 3.00'D x (69 cf Ove 84 cf Total Ava Outlet Devices 8.0" Round C L= 10.0' CPP, Inlet / Outlet Im n = 0.013 Corr. 8.210 in/hr Exf	065 af (1009 <u>Description</u> 6.00'H Verti erall - 69 cf 1 6.00'H Vertion ilable Storag ulvert projecting, r vert= 300.00 ugated PE, s iltration ove	% of inflow) ical Cone/Cy Embedded = + cal Cone/Cylial all Thickness e mo headwall, / 300.00' S- mooth interior mooth interior er Surface ar	linder 554 cf x 40.0% \ nder Inside #1 = 42 cf Ke= 0.900 = 0.0000 '/' Cc= r, Flow Area= 0.: ea	/oids 0.900 35 sf
Center- <u>Volume</u> #1 <u>#2</u> <u>Device</u> #1 #2	No detention in of-Mass det. tin 300.00' 300.00' 300.00' Routing Primary Discarded	me= 2.0 mir me= 1.6 mir 3. 3. <u>Invert</u> 300.00' 300.00'	a calculated for 0. (740.1 - 738.5) rage Storage E 42 cf 14.00'D x 924 cf Ove 42 cf 3.00'D x (69 cf Ove 84 cf Total Ava Outlet Devices 8.0" Round C L= 10.0' CPP, Inlet / Outlet Im n= 0.013 COPP S.210 in/hr Exf Conductivity to	065 af (1009) escription 6.00'H Verti erall - 69 cf f 5.00'H Vertio rall - 5.0'' Wa illable Storag ulvert projecting, r yert= 300.00 gated PE, s illration ove Groundwate	<pre>% of inflow) ical Cone/Cy Embedded = + cal Cone/Cyli all Thickness e mo headwall, ' / 300.00' S: mooth interio er Surface ar er Elevation = </pre>	linder 554 cf x 40.0% \ nder Inside #1 = 42 cf Ke= 0.900 = 0.0000 '/' Cc= ea 220.00'	/oids 0.900 35 sf
Center- #1 #2 Device #1 #2	Routing Discarded	me= 2.0 mir me= 1.6 mir <u>Avail.Sto</u> 3: <u>3:</u> <u>1nvert</u> 3:00.00' 3:00.00'	a calculated for 0. (740.1 - 738.5) rage Storage E 42 cf 14.00'D x 924 cf 0V 42 cf 3.00'D x 69 cf Ove 84 cf Total Ava Outlet Devices 8.0" Round C L= 10.0' CPP, Inlet / Outlet Im n= 0.013 Corrr. 8.210 in/hr Exf Conductivity to	065 af (1009 Description 6.00'H Verti erall - 69 cf 5.00'H Verti rall - 5.0" Wa ilable Storag ulvert projecting, r vert= 300.00 igated PE, s iltration ova Groundwate	% of inflow) ical Cone/Cy Embedded = 1 cal Cone/Cyli all Thickness le no headwall, ' / 300.00' S: mooth interion er Surface ard er Surface ard er Surface ard	linder 554 cf x 40.0% \ nder Inside #1 = 42 cf Ke= 0.900 = 0.0000 '/' Cc= ea 220.00'	/oids 0.900 35 sf
Center- Volume #1 #2 Device #1 #2 Piscard	Invert 300.00' 300.00' Routing Primary Discarded	me= 2.0 mir me= 1.6 mir <u>Avail.Sto</u> 3. <u>Invert</u> 300.00' 300.00' Max=0.03 cf	a calculated for 0. (740.1 - 738.5) rage Storage E 42 cf 14.00'D x 924 cf 0v 42 cf 3.00'D x (69 cf Ove 84 cf Total Ava Outlet Devices 8.0" Round C L= 10.0' CPP, Inlet / Outlet Im n= 0.013 Corrr. 8.210 in/nr Exf Conductivity to s @ 12.10 hrs H offs)	065 af (1009 Description 6.00'H Verti erall - 69 cf I 5.00'H Verti rall - 5.0" Wa ilable Storage ulvert projecting, r yert= 300.00 igated PE, s iltration ove Groundwate W=300.83'	% of inflow) ical Cone/Cy Embedded = : cal Cone/Cyli all Thickness re no headwall, ' / 300.00' S: mooth interiou er Surface are re Elevation = (Free Discha	linder 554 cf x 40.0% \ nder Inside #1 = 42 cf Ke= 0.900 = 0.0000 '/' Cc= r, Flow Area= 0.1 ea 220.00' rge)	/oids 0.900 35 sf

			Summary for Pond 12P: IP1
Inflow A Inflow Outflow Discarde Primary	rea = 0.2 = 0.8 = 0.8 ed = 0.0 = 0.7	281 ac,100.0 1 cfs @ 12 0 cfs @ 12 3 cfs @ 12 7 cfs @ 12	.00% Impervious, Inflow Depth > 1.67" for 2-Year event 2.10 hrs, Volume= 0.039 af 2.12 hrs, Volume= 0.039 af, Atten= 2%, Lag= 1.0 min 2.12 hrs, Volume= 0.011 af 2.12 hrs, Volume= 0.028 af
Routing	by Stor-Ind me	othod Time	2 Span = 5.00-20.00 hrs. dt = 0.05 hrs.
Peak El	ev= 300.79' @	12.12 hrs	Surf.Area= 154 sf Storage= 59 cf
Center-o	of-Mass det. tin	ne= 1.9 min	n (733.0 - 731.2)
Volume	Invert	Avail.Stor	prage Storage Description
<u>Volume</u> #1	Invert 300.00'	Avail.Stor 28	Storage Description 81 cf 14.00'D x 6.00'H Vertical Cone/Cylinder 90 C0 X 6.00'H Vertical Cone/Cylinder
<u>Volume</u> #1 #2	Invert 300.00' 300.00'	Avail.Stor 28 17	Storage Description 81 cf 14.00'D x 6.00'H Vertical Cone/Cylinder 924 cf Overall - 220 cf Embedded = 704 cf x 40.0% Voids 70 cf 6.00'D x 6.00'H Vertical Cone/Cylinder Inside #1 220 cf Overall - 5 0" Wall Thickness = 170 cf
<u>Volume</u> #1 #2	Invert 300.00' 300.00'	Avail.Stor 28 17 45	Storage Description 181 cf 14.00'D x 6.00'H Vertical Cone/Cylinder 924 cf Overall - 220 cf Embedded = 704 cf x 40.0% Voids 70 cf 6.00'D x 6.00'H Vertical Cone/Cylinder Inside #1 220 cf Overall - 5.0" Wall Thickness = 170 cf 551 cf Total Available Storage
Volume #1 #2 Device	Invert 300.00' 300.00'	Avail.Stor 28 17 45 Invert	Storage Description 181 cf 14.00'D x 6.00'H Vertical Cone/Cylinder 924 cf Overall - 220 cf Embedded = 704 cf x 40.0% Voids 70 cf 6.00'D x 6.00'H Vertical Cone/Cylinder Inside #1 220 cf Overall - 5.0" Wall Thickness = 170 cf 51 cf Total Available Storage Outlet Devices
Volume #1 #2 Device #1	Invert 300.00' 300.00' Routing Primary	Avail.Stor 28 17 45 Invert 300.00'	Bit of Storage Description 181 cf 14.00'D x 6.00'H Vertical Cone/Cylinder 924 cf Overall - 220 cf Embedded = 704 cf x 40.0% Voids 70 cf 6.00'D x 6.00'H Vertical Cone/Cylinder Inside #1 220 cf Overall - 5.0" Wall Thickness = 170 cf 51 cf Total Available Storage Outlet Devices 8.0" Round Culvert L= 10.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 300.00' / 300.00' S= 0.0000 // Cc= 0.900 Inlet / Outlat Invert= 30.00' / 300.00' S= 0.0000 // Cc= 0.35 sf
Volume #1 #2 Device #1 #2	Invert 300.00' 300.00' Routing Primary Discarded	Avail.Stor 28 17 45 <u>Invert</u> 300.00' 300.00'	Barge Storage Description 181 cf 14.00'D x 6.00'H Vertical Cone/Cylinder 924 cf Overall - 220 cf Embedded = 704 cf x 40.0% Voids 70 cf 6.00'D x 6.00'H Vertical Cone/Cylinder Inside #1 220 cf Overall - 5.0" Wall Thickness = 170 cf 551 cf Total Available Storage Outlet Devices 8.0" Round Culvert L= 10.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 300.00' / 300.00' S= 0.0000 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.35 sf 8.210 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 220.00'

Page 20

<pre>'repare lydroCA</pre>	ed by {ente .D® 10.00-26	r your com ଚିs/n 04015	pany na <u>© 2020 ⊦</u>	Ime nere} lydroCAD Softwar	e Solutions LLC Pa	2/202 age 2
			Su	mmary for Po	nd 13P: IP1	
nflow A	rea =	0.281 ac,10	0.00% I	mpervious, Inflo	w Depth > 1.20" for 2-Year event	
nflow	=	0.77 cfs @	12.12 h	rs, Volume=	0.028 af	
Jutflow	. =	0.79 cfs @	12.11 h	irs, Volume=	0.028 af, Atten= 0%, Lag= 0.0 min	
JISCAID	ed =	0.03 cfs @	12.11 h	irs, Volume=	0.009 at	
many	-	0.70 CI3 @	12.111	iis, volume=	0.020 al	
Routina	by Stor-Ind	method. Tir	ne Span	= 5.00-20.00 hrs	. dt= 0.05 hrs	
Routing 'eak Ele	by Stor-Ind ev= 302.09'	method, Tir @ 12.11 hr	ne Span s Surf./	= 5.00-20.00 hrs Area= 154 sf St	, dt= 0.05 hrs orage= 157 cf	
Routing Peak Ele	by Stor-Ind ev= 302.09'	method, Tir @ 12.11 hr	ne Span s Surf. <i>I</i>	= 5.00-20.00 hrs Area= 154 sf St	, dt= 0.05 hrs orage= 157 cf	
Routing 'eak Ele 'lug-Flo	by Stor-Ind ev= 302.09' w detentior	method, Tir @ 12.11 hr time= 15.4	ne Span s Surf./ min calc	= 5.00-20.00 hrs Area= 154 sf St culated for 0.028	, dt= 0.05 hrs orage= 157 cf af (100% of inflow)	
Routing Yeak Ele Ylug-Flo Center-c	by Stor-Ind ev= 302.09' w detentior of-Mass det	method, Tir @ 12.11 hr time= 15.4 . time= 15.4	ne Span s Surf./ min calc min (74	= 5.00-20.00 hrs Area= 154 sf Sf culated for 0.028 I4.9 - 729.5)	, dt= 0.05 hrs orage= 157 cf af (100% of inflow)	
Routing Peak Ele Plug-Flo Center-c /olume	by Stor-Ind ev= 302.09' w detentior of-Mass det Inver	method, Tir @ 12.11 hr n time= 15.4 . time= 15.4 t Avail.5	ne Span s Surf./ min calc min (74 Storage	= 5.00-20.00 hrs Area= 154 sf St culated for 0.028 (4.9 - 729.5) Storage Descri	, dt= 0.05 hrs orage= 157 cf af (100% of inflow) otion	
Routing Peak Ele Plug-Flo Center-c <u>/olume</u> #1	by Stor-Ind ev= 302.09' ww detentior of-Mass det Inver 300.00	method, Tir @ 12.11 hr n time= 15.4 . time= 15.4 t <u>Avail.5</u>	ne Span s Surf./ min calc min (74 <u>Storage</u> 281 cf	= 5.00-20.00 hrs Area= 154 sf Sf culated for 0.028 (4.9 - 729.5) <u>Storage Descri</u> 14.00'D x 6.00	, dt= 0.05 hrs orage= 157 cf af (100% of inflow) <u>otion H Vertical Cone/Cylinder</u>	
Routing Peak Ele Plug-Flo Center-co <u>/olume</u> #1	by Stor-Ind ev= 302.09' w detentior of-Mass det Inver 300.00	method, Tir @ 12.11 hr n time= 15.4 . time= 15.4 t <u>Avail.5</u>	ne Span s Surf./ min calc min (74 <u>Storage</u> 281 cf	= 5.00-20.00 hrs Area= 154 sf Sf culated for 0.028 (4.9 - 729.5) <u>Storage Descri</u> 14.00'D x 6.00 924 cf Overall	, dt= 0.05 hrs orage= 157 cf af (100% of inflow) otion H Vertical Cone/Cylinder 220 cf Embedded = 704 cf x 40.0% Voids	
Routing Peak Ele Plug-Flo Center-c <u>/olume</u> #1 #2	by Stor-Ind ev= 302.09' w detentior of-Mass det Inver 300.00 300.00	method, Tir @ 12.11 hr h time= 15.4 time= 15.4 t <u>Avail.5</u>	ne Span s Surf./ min calc min (74 <u>Storage</u> 281 cf 170 cf	= 5.00-20.00 hrs Area= 154 sf Sl culated for 0.028 (4.9 - 729.5) <u>Storage Descri</u> 14.00'D x 6.00 924 cf Overall 6.00'D x 6.00'	, dt= 0.05 hrs orage= 157 cf af (100% of inflow) <u>otion</u> H Vertical Cone/Cylinder 220 cf Embedded = 704 cf x 40.0% Voids I Vertical Cone/Cylinder Inside #1	
Routing Peak El Plug-Flo Center-c /olume #1 #2	by Stor-Ind ev= 302.09' w detentior of-Mass det Inver 300.00 300.00	method, Tir @ 12.11 hr: h time= 15.4 time= 15.4 t <u>Avail.S</u>	ne Span s Surf./ min calc min (74 <u>Storage</u> 281 cf 170 cf	= 5.00-20.00 hrs Area= 154 sf Sl culated for 0.028 (4.9 - 729.5) Storage Descri 14.00'D x 6.00 924 cf Overall - 6.00'D x 6.00'H 220 cf Overall -	, dt= 0.05 hrs orage= 157 cf af (100% of inflow) btion H Vertical Cone/Cylinder 220 cf Embedded = 704 cf x 40.0% Voids Vertical Cone/Cylinder Inside #1 5.0" Wall Thickness = 170 cf	
Routing Peak Ele Plug-Flo Center-c <u>/olume</u> #1 #2	by Stor-Ind ev= 302.09' w detentior of-Mass det Inver 300.00 300.00	method, Tir @ 12.11 hr: h time= 15.4 t Avail.5	me Span s Surf./ min calo min (74 <u>Storage</u> 281 cf 170 cf 451 cf	= 5.00-20.00 hrs Area= 154 sf Sf culated for 0.028 (4.9 - 729.5) Storage Descrit 14.00'D x 6.00 924 cf Overall 6.00'D x 6.00'H 220 cf Overall Total Available	, dt= 0.05 hrs brage= 157 cf af (100% of inflow) btion H Vertical Cone/Cylinder 220 cf Embedded = 704 cf x 40.0% Voids Vertical Cone/Cylinder Inside #1 5.0" Wall Thickness = 170 cf Storage	
Routing Peak Ele Plug-Flo Center-c /olume #1 #2 	by Stor-Ind ev= 302.09' w detentior of-Mass det Inver 300.00 300.00 Routing	method, Tir @ 12.11 hr: h time= 15.4 t Avail.5 y	ne Span s Surf. <i>f.</i> min calc min (74 <u>Storage</u> 281 cf 170 cf 451 cf rt Outl	= 5.00-20.00 hrs Area= 154 sf Sl culated for 0.028 (4.9 - 729.5) Storage Descrit 14.00°D x 6.00°D 924 of Overall - 6.00°D x 6.00°H 220 of Overall - Total Available et Devices	, dt= 0.05 hrs prage= 157 cf af (100% of inflow) btion H Vertical Cone/Cylinder 220 cf Embedded = 704 cf x 40.0% Voids Vertical Cone/Cylinder Inside #1 5.0" Wall Thickness = 170 cf Storage	
Routing Peak Eli Plug-Flo Center-c #1 #2 <u>)evice</u> #1	by Stor-Ind ev= 302.09' w detentior of-Mass det Inver 300.00 300.00 <u>300.00</u> Bouting Discarded	method, Tir @ 12.11 hr: h time= 15.4 t Avail.5 y y Inve 300.0	ne Span s Surf./ min calc min (74 <u>Storage</u> 281 cf 170 cf 451 cf rt <u>Outl</u> 0' 8.21	= 5.00-20.00 hrs Area= 154 sf Sf culated for 0.028 (4.9 - 729.5) Storage Descrit 14.00°D x 6.00°D 924 cf Overall 6.00°D x 6.00°H 220 cf Overall Total Available et Devices 0 in/hr Exfiltrat	, dt= 0.05 hrs brage= 157 cf af (100% of inflow) btion H Vertical Cone/Cylinder 220 cf Embedded = 704 cf x 40.0% Voids Vertical Cone/Cylinder Inside #1 5.0" Wall Thickness = 170 cf Storage on over Surface area	
Routing Peak Eli Plug-Flc Center-c #1 #2 <u>)evice</u> #1	by Stor-Ind ev= 302.09' w detentior of-Mass det <u>Inver</u> 300.00 300.00 <u>300.00</u> <u>Routing</u> Discarded	method, Tir @ 12.11 hr h time= 15.4 t Avail.5 y 	ne Span s Surf./ min calc min (74 <u>Storage</u> 281 cf 170 cf <u>451 cf</u> <u>451 cf</u> <u>rt Outl</u> 0' 8.21 Con	= 5.00-20.00 hrs Area= 154 sf Sf sulated for 0.028 (4.9 - 729.5) <u>Storage Descri</u> 14.00'D x 6.00' 924 cf Overall 6.00'D x 6.00' 220 cf Overall Total Available <u>et Devices</u> 0 in/hr Exfiltrat ductivity to Grou	, dt= 0.05 hrs brage= 157 cf af (100% of inflow) btion H Vertical Cone/Cylinder 220 cf Embedded = 704 cf x 40.0% Voids Vertical Cone/Cylinder Inside #1 5.0" Wall Thickness = 170 cf Storage on over Surface area hdwater Elevation = 220.00'	
Routing Peak El Plug-Flc Center-c #1 #2 <u>Device</u> #1 #2	by Stor-Ind ev= 302.09' w detentior of-Mass det Inver 300.00 300.00 Routing Discarded Primary	method, Tir @ 12.11 hr: h time= 15.4 t Avail.5 y Inve 300.0 302.0	ne Span s Surf./ min calc min (74 <u>Storage</u> 281 cf 170 cf 451 cf rt Outl 0' 8.21 Con 0' 2.0 "	= 5.00-20.00 hrs Area= 154 sf Sl sulated for 0.028 (4.9 - 729.5) Storage Descri 14.00'D x 6.00 924 cf Overall <u>220 cf Overall</u> Total Available <u>et Devices</u> 0 in/hr Exfiltratt ductivity to Grou x 2.0" Horiz. O	, dt= 0.05 hrs brage= 157 cf af (100% of inflow) btion H Vertical Cone/Cylinder 220 cf Embedded = 704 cf x 40.0% Voids Vertical Cone/Cylinder Inside #1 5.0" Wall Thickness = 170 cf Storage on over Surface area hdwater Elevation = 220.00' ifice/Grate X 5.00 columns	
Routing Peak El Plug-Flc Center-c / <u>olume</u> #1 #2 <u>Device</u> #1 #2	by Stor-Ind ev= 302.09' w detentior of-Mass det Inver 300.00 300.00 <u>Routing</u> Discarded Primary	method, Tir @ 12.11 hr: h time= 15.4 t Avail.5 y y Inve 300.0 302.0	ne Span s Surf./ min calc min (74 <u>Storage</u> 281 cf 170 cf 451 cf rt <u>Outl</u> 0' 8.21 Con 0' 2.0 " X 5	= 5.00-20.00 hrs Area = 154 sf Sl culated for 0.028 (4.9 - 729.5) Storage Descri 14.00'D x 6.00' 924 cf Overall 6.00'D x 6.00'H 220 cf Overall Total Available et Devices 0 in/hr Exfiltrat ductivity to Grou x 2.0'' Horiz. O rows C = 0.600 ir	, dt= 0.05 hrs brage= 157 cf af (100% of inflow) btion H Vertical Cone/Cylinder 220 cf Embedded = 704 cf x 40.0% Voids Vertical Cone/Cylinder Inside #1 5.0" Wall Thickness = 170 cf Storage on over Surface area ndwater Elevation = 220.00' iffice/Grate X 5.00 columns 24.0" x 24.0" Grate (17% open area)	

Primary OutFlow Max=0.72 cfs @ 12.11 hrs HW=302.09 2=Orifice/Grate (Weir Controls 0.72 cfs @ 0.99 fps)

HydroCAD Analysis

Existing & Proposed Conditions – 10 Year Storm

Analysis	
Prepared by {enter your company name here}	Printed 6/22/2021
HydroCAD® 10.00-26 s/n 04015 © 2020 HydroCAD Software Solutions LLC	Page 2

Project Notes

Rainfall events imported from "Analysis 12-6-2017.hcp"

Analysis Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 04015 © 2020 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Printed 6/22/2021

Page 3

Area (acres)	CN	Description (subcatchment-numbers)
0.284	39	>75% Grass cover, Good, HSG A (4S)
0.095	61	>75% Grass cover, Good, HSG B (1S)
0.497	98	Paved parking, HSG A (4S)
0.943	98	Paved parking, Roof, HSG B (1S)
0.738	98	Paved roads w/curbs & sewers, HSG A (7S, 8S)
0.421	98	Roofs, HSG A (1S, 4S)
0.119	98	Unconnected pavement, HSG A (4S)
0.281	98	Unconnected roofs, HSG A (6S)
3.378	92	TOTAL AREA

Analysis	
Prepared by {enter your company name here}	Printed 6/22/2021
HydroCAD® 10.00-26 s/n 04015 © 2020 HydroCAD Software Solutions LLC	Page 4
	-

Soil Listing (all nodes)

Area (acres)	Soil Group	Subcatchment Numbers
2.340	HSG A	1S, 4S, 6S, 7S, 8S
1.038	HSG B	1S
0.000	HSG C	
0.000	HSG D	
0.000	Other	
3.378		TOTAL AREA

pared by roCAD® 10	{enter you 0.00-26 s/n (r company 04015 © 202	Printed 6/22	/2021 age <u>5</u>							
Ground Covers (all nodes)											
HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment				
(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers				
0.284	0.095	0.000	0.000	0.000	0.379	>75% Grass cover, Good	1S,				
							4S				
0.497	0.000	0.000	0.000	0.000	0.497	Paved parking	4S				
0.000	0.943	0.000	0.000	0.000	0.943	Paved parking, Roof	1S				
0.738	0.000	0.000	0.000	0.000	0.738	Paved roads w/curbs & sewers	7S,				
							8S				
0.421	0.000	0.000	0.000	0.000	0.421	Roofs	1S,				
							4S				
0.119	0.000	0.000	0.000	0.000	0.119	Unconnected pavement	4S				
0.281	0.000	0.000	0.000	0.000	0.281	Unconnected roofs	6S				
2.340	1.038	0.000	0.000	0.000	3.378	TOTAL AREA					

Analysis Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 04015 © 2020 HydroCAD Software Solutions LLC	Printed 6/22/2021 Page 6
Pipe Listing (all nodes)	

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
1	9P	300.00	300.00	10.0	0.0000	0.013	8.0	0.0	0.0
2	12P	300.00	300.00	10.0	0.0000	0.013	8.0	0.0	0.0

Analysis			Type III 24-hi	10-Year Rainfall=4.86"
Prepared by {enter your HvdroCAD® 10.00-26 s/n 04	company name 4015 © 2020 Hvdrc	here} CAD Software Sol	utions LLC	Printed 6/22/2021 Page 7
<u></u>	1010 0 2020 Hydro			
F	Time span=5.00	-20.00 hrs, dt=0.0	15 hrs, 301 points	
Reach routi	ng by Stor-Ind+Tra	ans method - Po	nd routing by Stor-	Ind method
Subactabrant 18, Evictiv	na Sito	Pupoff Aroo-57	500 of 02 80% Imp	prvious Rupoff Dopth>1 02"
Subcatchinent 15: Existin	ig site	Runon Alea-57,	Tc=6.0 min CN=9	5 Runoff=5.95 cfs 0.443 af
0		D	070 - 5 70 740/ 1	Dura # Dantha 0.77"
Subcatchment 45: Propo	sea	Runon Area=45,	Tc=6.0 min CN=8	2 Runoff=3.52 cfs 0.239 af
Subcatchment 6S: PROP	BLDG	Runoff Area=12,2	30 st 100.00% Impe Tc=6.0 min CN=9	ervious Runoff Depth>4.29" 8 Runoff=1 30 cfs 0 100 af
Subcatchment 7S: STRE	ΞT	Runoff Area=16,0	70 sf 100.00% Impe Tc=6.0 min CN=9	ervious Runoff Depth>4.29" 8 Runoff=1 71 cfs 0 132 af
Subcatchment 8S: STRE	ET	Runoff Area=16,0	70 sf 100.00% Impe	ervious Runoff Depth>4.29"
			10-0.0 min CN-3	0 Runon=1.71 Cis 0.152 ai
Reach 3R: Outlet				Inflow=7.67 cfs 0.575 af
				Outriow=7.67 crs 0.575 ar
Reach 5R: (new Reach)				Inflow=6.40 cfs 0.410 af
				Outflow=6.40 cts 0.410 at
Pond 9P: IP1		Peak Elev=	301.21' Storage=77	cf Inflow=1.30 cfs 0.100 af
	Discarded=0.03 c	fs 0.032 af Prima	ry=1.24 cfs 0.069 at	Outflow=1.27 cfs 0.100 af
Pond 12P: IP1		Peak Elev=	301.13' Storage=85	cf Inflow=1.24 cfs 0.069 af
	Discarded=0.03 c	fs 0.017 af Prima	ry=1.20 cfs 0.052 at	f Outflow=1.23 cfs 0.069 af
Pond 13P: IP1		Peak Elev=3	02.14' Storage=161	cf Inflow=1.20 cfs 0.052 af
	Discarded=0.03 c	fs 0.013 af Prima	ry=1.21 cfs 0.039 at	f Outflow=1.24 cfs 0.052 af

 Total Runoff Area = 3.378 ac
 Runoff Volume = 1.047 af
 Average Runoff Depth = 3.72"

 11.21% Pervious = 0.379 ac
 88.79% Impervious = 2.999 ac

Ana Prep Hydr	oly:	sis ed	by { ® 10.	ent	eryo 26 s/n	ur c 040	omp)15 @	any 202	nam 0 Hyd	e hei IroCA	re} D Sc	oftwa	re So	lution	Type	2	?4-hr	10-Ye	e <i>ar Ra</i> Printee	<i>infall=4.86"</i> d 6/22/2021 <u>Page 8</u>
						S	umr	nary	for	Sub	ocat	chn	nent	1S:	Exi	stin	g Site	e		
Run	off		=		5.95	i cfs	@	12.0	9 hrs	, Vol	ume	=		0.44	43 af,	De	oth> 4	1.03"		
Runo Type	off I e III	by 24	SCS I-hr	5 TR 10-`	-20 m Year I	neth Rain	od, L Ifall=	JH=S 4.86"	CS, I	Neig	hted	-CN,	, Tim	e Spa	an= 5	.00-2	20.00	hrs, dt	= 0.05	hrs
	1	Are	ea (s	f)	CN	De	escri	ption												
*		4	4,14 1,07 2.29	0 0 0	61 98 98	>7 Pa Ro	75% aved pofs.	Gras: parki HSG	s cov ng, F i A	er, G Roof,	iood, HSC	HS B B	G B							
		5	7,50	0	95	W	eigh	ted A	veraç	je										
		5	4,14 3 36	0		7.2	20% 80%	Perv 6 Imr	ious .	Area	rea									
		5	0,00	0		32		0 IIIIp		us A	ica									
(m	Tc (nic		Leng	th	Slop	pe	Velo	ocity	Сар	acity	D	escri	iption	I						
	6.0		(166	51)	(10	11)	(10)	sec)		(05)	Di	irect	Ent	rv.						
								_	_	_			_		_					
								Su	bcat	chn	nen	t 1S	: Ex	istir	ng Si	te				
				1	1			1	1	Hydro	ograp	h			1	1	1	1		
		Ĺ						 		5.95	5 cfs									Runoff
	6-	ľ						1		0.00						Тν	pe l	1 24	hr	
								 			_		-16)-Ye	ar-	Rai	nfal	=4 8	86"	
	5-	Í											R	unc	ff Δ	ros	-57	500	ef	
				<u>.</u>							-		ייי סווס					112	of -	
(s)	4-	Í							ļ.				ĸui		VO	un 4 D		.443	al 1	
د م				4		-		i +	i 		K			Ru	nor	ע ז	eptr	1>4.U		
Б	3-	Í				i			i		\mathbf{H}	i				i i	I C=t	5.0 n	nin	
					+			; +	i -i	/	K							CN=	:95	
	2-	Ĩ									10									
	1-	/			+			 		+-1	1-1	<u>}</u> -+-				+		+		
								 	m			\bigcirc		m						
	0-		////			111	<u> </u>			<u></u>	<u> </u>		<u></u>		Щ		////	/////		
	-	5	6		7	8	9	10	11	12 Tim	2 ne (ho	13 urs)	14	15	16	17	18	19	20	

Analysis Type III 24-hr 10-Year Rainfall=4.86" Prepared by {enter your company name here} Printed 6/22/2021 HydroCAD® 10.00-26 s/n 04015 © 2020 HydroCAD Software Solutions LLC Page 9	Analysis Type III 24-hr 10-Year Rainfall=4.86" Prepared by {enter your company name here} Printed 6/22/2021 HydroCAD® 10.00-26 s/n 04015 © 2020 HydroCAD Software Solutions LLC Page 10
Summary for Subcatchment 4S: Proposed	Summary for Subcatchment 6S: PROP BLDG
Runoff = 3.52 cfs @ 12.09 hrs, Volume= 0.239 af, Depth> 2.77"	Runoff = 1.30 cfs @ 12.09 hrs, Volume= 0.100 af, Depth> 4.29"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.86"	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.86"
Area (sf) CN Description	Area (sf) CN Description
12,354 39 >75% Grass cover, Good, HSG A	12,230 98 Unconnected roofs, HSG A
5,200 98 Unconnected pavement, HSG A 6,061 98 Roofs, HSG A	12,230 100.00% Impervious Area 12,230 100.00% Unconnected
45,270 82 Weighted Average 12,354 27,29% Pervious Area	Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
32,916 72.71% Impervious Area	6.0 Direct Entry,
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	Subcatchment 6S: PROP BLDG Hydrograph
6.0 Direct Entry, Subcatchment 4S: Proposed Hydrograph 10-Year Rainfall=4.86" Runoff Area=45,270 sf Runoff Volume=0.239 af Runoff Depth>2.77" Tc=6.0 min CN=82 0 0 0 0 0 0 0 0 0 0 0 0 0	(Fund) (Fund)

Analysis	Type III 24-hr	10-Year Rainfall=4.86"
Prepared by {enter your company name here}		Printed 6/22/2021
HvdroCAD® 10.00-26 s/n 04015 © 2020 HvdroCAD Software Solution	s LLC	Page 13

Summary for Reach 3R: Outlet

Inflow Area	a =	1.689 ac, 9	4.37% Imp	ervious,	Inflow De	pth > 4.	09" for	10-Year event
Inflow	=	7.67 cfs @	12.09 hrs,	Volume	=	0.575 af		
Outflow	=	7.67 cfs @	12.09 hrs,	Volume	=	0.575 af,	Atten= (0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Analysis	Type III 24-hr	10-Year Rainfall=4.86"
Prepared by {enter your company name here}		Printed 6/22/2021
HydroCAD® 10.00-26 s/n 04015 © 2020 HydroCAD Software Solution	is LLC	Page 14

Summary for Reach 5R: (new Reach)

Inflow Are	ea =	1.689 ac, 83.21% Impervious,	Inflow Depth > 2.9	1" for 10-Year event
Inflow	=	6.40 cfs @ 12.10 hrs, Volume	= 0.410 af	
Outflow	=	6.40 cfs @ 12.10 hrs, Volume	= 0.410 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Prepare HydroCA	ed by {enter y	our company r /n 04015 © 2020	name here}	Printed 6/22/2021 Page 15
		5	Summary for Pond 9P: IP1	
Inflow A Inflow Outflow Discarde Primary	rea = 0.1 = 1.2 = 1.2 ed = 0.0 = 1.2	281 ac,100.00% 30 cfs @ 12.09 27 cfs @ 12.10 03 cfs @ 12.10 24 cfs @ 12.10	hmpervious, Inflow Depth > 4.29" fo hrs, Volume= 0.100 af hrs, Volume= 0.100 af, Attens hrs, Volume= 0.032 af hrs, Volume= 0.069 af	or 10-Year event = 3%, Lag= 1.0 min
Routing Peak El	by Stor-Ind me ev= 301.21' @	ethod, Time Spa 12.10 hrs Sur	an= 5.00-20.00 hrs, dt= 0.05 hrs f.Area= 154 sf Storage= 77 cf	
Plug-Flo	w detention tir	me= 1.9 min cal	culated for 0.100 af (100% of inflow)	
Volumo	Invort		36.8 - 735.3)	
Volume #1	Invert 300 00'	Avail.Storage	36.8 - 735.3) Storage Description 14.00'D x 6.00'H Vertical Cone/Cvl	inder
Volume #1 #2	Invert 300.00' 300.00'	Avail.Storage 342 c 42 c	 36.8 - 735.3) Storage Description f 14.00'D x 6.00'H Vertical Cone/Cyl 924 cf Overall - 69 cf Embedded = 8 f 3.00'D x 6.00'H Vertical Cone/Cylir 69 cf Overall - 5.0" Wall Thickness = 	inder 154 cf x 40.0% Voids n der Inside #1 = 42 cf
Volume #1 #2	Invert 300.00' 300.00'	<u>Avail.Storage</u> 342 c 384 c	 36.8 - 735.3) Storage Description 14.00'D x 6.00'H Vertical Cone/Cyl 924 cf Overall - 69 cf Embedded = 8 3.00'D x 6.00'H Vertical Cone/Cylir 69 cf Overall - 5.0' Wall Thickness = f Total Available Storage 	inder 154 cf x 40.0% Voids n der Inside #1 - 42 cf
Volume #1 #2	Invert 300.00' 300.00'	<u>Avail.Storage</u> 342 c 42 c 384 c	36.8 - 735.3) Storage Description 14.00'D x 6.00'H Vertical Cone/Cyl 924 cf Overall - 69 cf Embedded = 8 3.00'D x 6.00'H Vertical Cone/Cylir 69 cf Overall - 5.0'' Wall Thickness = f Total Available Storage thet Devices	inder 54 cf x 40.0% Voids n der Inside #1 • 42 cf
Volume #1 #2 Device #1	Invert 300.00' 300.00' <u>300.00'</u> Routing Primary	Avail.Storage 342 c 42 c 384 c <u>Invert Ot</u> 300.00' 8. L= Inl	 36.8 - 735.3) <u>Storage Description</u> f 14.00'D x 6.00'H Vertical Cone/Cyl 924 cf Overall - 69 cf Embedded = 8 6 3.00'D x 6.00'H Vertical Cone/Cylir 69 cf Overall - 5.0" Wall Thickness = f Total Available Storage itlet Devices 0" Round Culvert 10.0' CPP, projecting, no headwall, k et / Outlet Invert= 300.00' / 300.00' S= 	inder 54 cf x 40.0% Voids nder Inside #1 = 42 cf Ke= 0.900 = 0.0000 '/' Cc= 0.900
Volume #1 #2 Device #1 #2	Invert 300.00' 300.00' <u>Routing</u> Primary Discarded	Avail.Storage 342 c 42 c 384 c <u>Invert Ot</u> 300.00' 8.0 300.00' 8.1 300.00' 8.1 Co	36.8 - 735.3) Storage Description 14.00'D x 6.00'H Vertical Cone/Cyl 924 cf Overall - 69 cf Embedded = 8 3.00'D x 6.00'H Vertical Cone/Cylir 69 cf Overall - 5.0' Wall Thickness = f Total Available Storage " Round Culvert 10.0' CPP, projecting, no headwall, k et / Outlet Invert= 300.00' / 300.00' S= 0.013 Corrugated PE, smooth interior, 210 in/hr Exfiltration over Surface are onductivity to Groundwater Elevation = 2	inder 154 cf x 40.0% Voids 154 cf x 40.0% Voids 154 cf 154

			_			
			Sum	mary for Pond 12P:	IP1	
Inflow A	rea = 0.2	281 ac,100.0	00% Im	pervious, Inflow Depth	> 2.94"	for 10-Year event
Inflow	= 1.2	24 cfs @ 12	2.10 hrs	, Volume= 0.06	69 af	- 40/ L 4 0
Discord		(3 CTS @ 12	2.12 NFS 2.12 hrs	, Volume= 0.06	9 af, Atter	n= 1%, Lag= 1.0 min
Primary	= 12	0 cfs @ 12	2.12 ms 2 12 hrs	Volume= 0.01	2 af	
,				,		
Routing	by Stor-Ind me	ethod, Time	Span=	5.00-20.00 hrs, dt= 0.05	hrs	
Peak Ele	ev= 301.13' @	12.12 hrs	Surf.Are	ea= 154 sf Storage= 8	5 cf	
Diug Ela	w dotoption tir	no= 1.0 min	colcula	tod for 0.060 of (100% c	f inflow)	
Center-o	of-Mass det tir	ne= 1.9 min ne= 1.8 min	(732 1	730.3)	n nnow)	
	. mass as a			- / .) (/ .) /		
			`	- 750.5)		
Volume	Invert	Avail.Sto	rage S	Storage Description		
<u>Volume</u> #1	Invert 300.00'	Avail.Stor 28	rage S 31 cf 1	 From the second s	al Cone/Cy	linder
Volume #1	Invert 300.00'	Avail.Stor 28	rage 8 31 cf 1		al Cone/Cy mbedded =	r linder = 704 cf x 40.0% Voids
<u>Volume</u> #1 #2	Invert 300.00' 300.00'	Avail.Stor 28 17	rage 8 31 cf 1 70 cf 6	Storage Description 4.00'D x 6.00'H Vertica 24 cf Overall - 220 cf El .00'D x 6.00'H Vertical .00'D x 6.00'H Vertical .00'D x 6.00'H Vertical	al Cone/Cy mbedded = Cone/Cyli	/linder = 704 cf x 40.0% Voids inder Inside #1 = = 170 cf
<u>Volume</u> #1 #2	Invert 300.00' 300.00'	Avail.Stor 28 17	rage 5 31 cf 1 270 cf 6 251 cf 1		al Cone/Cy mbedded = Cone/Cyl I Thickness	/linder = 704 cf x 40.0% Voids i nder Inside #1 s = 170 cf
<u>Volume</u> #1 #2	Invert 300.00' 300.00'	Avail.Stor 28 17 45	rage 8 31 cf 1 51 cf 6 2 51 cf 7	Storage Description 4.00'D x 6.00'H Vertical 124 cf Overall - 220 cf Ei 120 x 6.00'H Vertical 120 cf Overall - 5.0" Wal Total Available Storage	al Cone/Cy mbedded = Cone/Cyli I Thickness	/linder = 704 cf x 40.0% Voids i nder Inside #1 s = 170 cf
Volume #1 #2 Device	Invert 300.00' 300.00' Routing	Avail.Stor 28 17 45 Invert	rage 5 31 cf 1 50 cf 6 51 cf 1 Outlet	Storage Description 4.00'D x 6.00'H Vertical 24 cf Overall - 220 cf El 20 cf Overall - 5.0" Wal otal Available Storage Devices	al Cone/Cy mbedded = Cone/Cyl I Thickness	/linder = 704 cf x 40.0% Voids i nde r Inside #1 s = 170 cf
Volume #1 #2 Device #1	Invert 300.00' 300.00' Routing Primary	Avail.Stor 28 17 45 Invert 300.00'	rage <u>8</u> 31 cf 1 70 cf 6 51 cf 1 Outlet 8.0" F	Storage Description 4.00'D x 6.00'H Vertical 124 cf Overall - 220 cf El 200'D x 6.00'H Vertical 200 cf Overall - 5.0" Wal otal Available Storage Devices Round Culvert	al Cone/Cy mbedded = Cone/Cyl I Thickness	/ linder = 704 cf x 40.0% Voids i nder Inside #1 s = 170 cf
Volume #1 #2 Device #1	Invert 300.00' 300.00' Routing Primary	Avail.Sto 28 17 48 <u>Invert</u> 300.00'	rage <u>S</u> 31 cf 1 70 cf <u>6</u> 251 cf 1 <u>Outlet</u> 8.0" F L= 10.	Storage Description 4.00'D x 6.00'H Vertical 124 cf Overall - 220 cf El 200 cf Overall - 5.0" Wal otal Available Storage Devices Sound Culvert 0' CPP, projecting, no	al Cone/Cy mbedded = Cone/Cyl I Thickness headwall,	/linder = 704 cf x 40.0% Voids inder Inside #1 s = 170 cf Ke= 0.900
Volume #1 #2 Device #1	Invert 300.00' 300.00' Routing Primary	Avail.Stor 28 17 48 Invert 300.00'	rage <u>S</u> 31 cf 1 50 cf <u>6</u> 51 cf 1 <u>2</u> 51 cf 1 <u>0utlet</u> 8.0" F L= 10. Inlet /	Storage Description 4.00'D x 6.00'H Vertical 124 cf Overall - 220 cf El 20 cf Overall - 5.0" Wal otal Available Storage Devices Sound Culvert 0' CPP, projecting, no Outlet Invert= 300.00' / 20 corverted DE	al Cone/Cy mbedded = Cone/Cyli I Thickness headwall, 300.00' S	/linder = 704 cf x 40.0% Voids inder Inside #1 s = 170 cf Ke= 0.900 = 0.0000 '/' Cc= 0.900
Volume #1 #2 Device #1	Invert 300.00' 300.00' Routing Primary	Avail.Stor 28 17 45 <u>Invert</u> 300.00'	rage <u>S</u> 31 cf 1 50 cf C 25 51 cf 1 <u>Outlet</u> 8.0" F L= 10. Inlet / n= 0.0 8.210	Storage Description 4.00'D x 6.00'H Vertical 24 cf Overall - 220 cf El 20 cf Overall - 5.0' Wal otal Available Storage Devices Round Culvert 0' CPP, projecting, no Outlet Invert= 300.00' / 3 13 Corrugated PE, sno	al Cone/Cy mbedded = Cone/Cyl I Thickness headwall, 300.00' S ooth interio	/linder = 704 cf x 40.0% Voids inder Inside #1 s = 170 cf Ke= 0.900 = 0.0000 '/' Cc= 0.900 r, Flow Area= 0.35 sf
Volume #1 #2 Device #1 #2	Invert 300.00' 300.00' Routing Primary Discarded	Avail.Stor 28 17 45 Invert 300.00' 300.00'	rage <u>S</u> 31 cf 1 50 cf C 251 cf 1 0utlet 8.0" F L= 10. Inlet / n= 0.0 8.210 Condu	Storage Description 4.00'D x 6.00'H Vertica 224 cf Overall - 220 cf E: 5.00'D x 6.00'H Vertica 220 cf Overall - 5.0' Wal Total Available Storage Devices Round Culvert 0' CPP, projecting, no Outlet Invert= 300.00' / 3 13 Corrugated PE, smc in/hr Extiltration over a	headwall, 300.00' S Surface ar	/linder = 704 cf x 40.0% Voids inder Inside #1 s = 170 cf Ke= 0.900 = 0.0000 '/' Cc= 0.900 r, Flow Area= 0.35 sf ea 220.00'
Volume #1 #2 Device #1 #2	Invert 300.00' 300.00' Routing Primary Discarded	Avail.Stor 28 17 45 <u>Invert</u> 300.00' 300.00'	rage <u>5</u> 31 cf 1 50 cf 6 25 51 cf 1 <u>Outlet</u> 8.0" F L= 10. Inlet / n= 0.0 8.210 Condu	Storage Description 4.00'D x 6.00'H Vertica 24 cf Overall - 220 cf E: 5.00'D x 6.00'H Vertica 20 cf Overall - 5.0" Wal Total Available Storage Devices Round Culvert 0' CPP, projecting, no Outlet Invert= 300.00' / 3 Corrugated PE, smc in/hr Exfiltration over s ctivity to Groundwater E	I Cone/Cy mbedded = Cone/Cyl Thickness headwall, 300.00' S soth interio Surface ar Elevation =	/linder = 704 cf x 40.0% Voids inder Inside #1 s = 170 cf Ke= 0.900 = 0.0000 '/' Cc= 0.900 r, Flow Area= 0.35 sf ea 220.00'
Volume #1 #2 Device #1 #2 Piscard	Invert 300.00' 300.00' Routing Primary Discarded ed OutFlow M	Avail.Stor 28 17 45 <u>Invert</u> 300.00' 300.00' Max=0.03 cfs	rage <u>5</u> 31 cf 1 70 cf 6 2 51 cf 1 0 2 51 cf 1 0 2 51 cf 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	August 2015 August 20	I Cone/Cy Bone/Cy I Thickness headwall, 300.00' S ooth interio Surface ar Ievation = ree Discha	/linder = 704 cf x 40.0% Voids inder Inside #1 s = 170 cf Ke= 0.900 = 0.0000 '/' Cc= 0.900 r, Flow Area= 0.35 sf ea 220.00' arge)

HydroCA	D® 10.00-26	s/n 04015 © 2	2020 Hy	droCAD Software	Solutions LLC	Printed 0/22/2021 Page 21
			Sun	nmary for Pon	d 13P: IP1	
Inflow A	rea =	0.281 ac,100.	.00% In	pervious, Inflow	Depth > 2.21" for	10-Year event
Inflow	= 1	.20 cfs @ 12	2.12 hr	s, Volume=	0.052 af	
Outflow	= 1	.24 cfs @ 1	2.11 hr	s, Volume=	0.052 af, Atten= 0	9%, Lag= 0.0 min
Discarde	ed = (0.03 cfs @ 12	2.11 hr	s, Volume=	0.013 af	
Primary	= 1	.21 cts @ 1.	2.11 nr	s, voiume=	0.039 af	
Peak Ele	ev= 302.14	@ 12.11 hrs	Surf.A	rea= 154 sf Stor	age= 161 cf	
Peak Ele Plug-Flo Center-o <u>Volume</u> #1	ev= 302.14 ow detention of-Mass det. <u>Invert</u> 300.00'	time= 13.0 mi time= 13.0 mi Avail.Sto 2	Surf.Ai in calcu in (742 orage 81 cf	rea= 154 sf Stor lated for 0.051 af 2.4 - 729.4) Storage Descripti 14.00'D x 6.00'H 024 of Overall - 2	age= 161 cf (100% of inflow) on Vertical Cone/Cylinc 20 of Emboddod = 70	ler
Peak Ele Plug-Flo Center-o <u>Volume</u> #1 #2	ev= 302.14 bw detention of-Mass det. <u>Invert</u> 300.00' 300.00'	time= 13.0 mi time= 13.0 mi <u>Avail.Sto</u> 20 1	Surf.Ai in calcu in (742 <u>prage</u> 81 cf 70 cf	rea= 154 sf Stor: lated for 0.051 af .4 - 729.4) Storage Descripti 14.00'D x 6.00'H 924 cf Overall - 2 6.00'D x 6.00'H V 220 cf Overall - 3	age= 161 cf (100% of inflow) on Vertical Cone/Cylince 20 cf Embedded = 70. /ertical Cone/Cylinde .0" Wall Thickness = 2	ler 4 cf x 40.0% Voids er Inside #1 170 cf
Peak El Plug-Flc Center-c <u>Volume</u> #1 #2	ev= 302.14 f www.detention of-Mass.det. Invert 300.00' 300.00'	time= 13.0 mi time= 13.0 mi <u>Avail.Sto</u> 21 11	Surf.Ai in calcu in (742 o <u>rage</u> 81 cf 70 cf 51 cf	rea= 154 sf Stor. Ilated for 0.051 af .4 - 729.4) Storage Descripti 14.00'D x 6.00'H 924 cf Overall - 2 6.00'D x 6.00'H V 220 cf Overall - 5 Total Available St	age= 161 cf (100% of inflow) on Vertical Cone/Cylinc 20 cf Embedded = 70 Vertical Cone/Cylinde .0" Wall Thickness = 7 torage	ler 4 cf x 40.0% Voids er Inside #1 170 cf
Peak Ei Plug-Flo Center-o Wolume #1 #2 Device	ev= 302.14 f ow detention of-Mass det. Invert 300.00' 300.00' Routing	time= 13.0 mi time= 13.0 mi <u>Avail.Sto</u> 2: 1: 4: Invert	in calcu in (742 orage 81 cf 70 cf 51 cf Outle	rea= 154 sf Stor. lated for 0.051 af 2.4 - 729.4) Storage Descripti 14.00'D x 6.00'H 924 cf Overall - 2 6.00'D x 6.00'H V 220 cf Overall - 5 Total Available Si t Devices	age= 161 cf (100% of inflow) on Vertical Cone/Cylind 20 cf Embedded = 70 /ertical Cone/Cylinde .0" Wall Thickness = 7 torage	ler 4 cf x 40.0% Voids er Inside #1 170 cf
Peak Eli Plug-Flc Center-o #1 #2 Device #1	ev= 302.14 f ow detention of-Mass det. Invert 300.00' 300.00' Routing Discarded	time= 13.0 mi time= 13.0 mi <u>Avail.Sto</u> 2: 1: 4: <u>Invert</u> 300.00'	Surf.An in calcu in (742 <u>prage</u> 81 cf 70 cf 51 cf <u>Outle</u> 8.210	rea= 154 sf Stor lated for 0.051 af .4 - 729.4) Storage Descripti 14.00'D x 6.00'H 924 cf Overall - 2 6.00'D x 6.00'H 220 cf Overall - 5 Total Available Si t Devices in/hr Exfiltration	age= 161 cf (100% of inflow) on Vertical Cone/Cylind 20 cf Embedded = 70 /ertical Cone/Cylinde .0" Wall Thickness = 7 torage	ler 4 cf x 40.0% Voids er Inside #1 170 cf

Primary OutFlow Max=1.25 cfs @ 12.11 hrs HW=302.14' (Free Discharge)

HydroCAD Analysis

Existing & Proposed Conditions - 25 Year Storm

Analysis	
Prepared by {enter your company name here}	Printed 6/22/2021
HydroCAD® 10.00-26 s/n 04015 © 2020 HydroCAD Software Solutions LLC	Page 2

Project Notes

Rainfall events imported from "Analysis 12-6-2017.hcp"

Analysis Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 04015 © 2020 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Printed 6/22/2021

Page 3

Area (acres)	CN	Description (subcatchment-numbers)
0.284	39	>75% Grass cover, Good, HSG A (4S)
0.095	61	>75% Grass cover, Good, HSG B (1S)
0.497	98	Paved parking, HSG A (4S)
0.943	98	Paved parking, Roof, HSG B (1S)
0.738	98	Paved roads w/curbs & sewers, HSG A (7S, 8S)
0.421	98	Roofs, HSG A (1S, 4S)
0.119	98	Unconnected pavement, HSG A (4S)
0.281	98	Unconnected roofs, HSG A (6S)
3.378	92	TOTAL AREA

Analysis	
Prepared by {enter your company name here}	Printed 6/22/2021
HydroCAD® 10.00-26 s/n 04015 © 2020 HydroCAD Software Solutions LLC	Page 4
	-

Soil Listing (all nodes)

Area (acres)	Soil Group	Subcatchment Numbers
2.340	HSG A	1S, 4S, 6S, 7S, 8S
1.038	HSG B	1S
0.000	HSG C	
0.000	HSG D	
0.000	Other	
3.378		TOTAL AREA

ared by {enter your company name here} Printed 6/22/20: _CAD® 10.00-26 s/n 04015 © 2020 HydroCAD Software Solutions LLC Page									
Ground Covers (all nodes)									
HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment		
(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers		
0.284	0.095	0.000	0.000	0.000	0.379	>75% Grass cover, Good	1S,		
							4S		
0.497	0.000	0.000	0.000	0.000	0.497	Paved parking	4S		
0.000	0.943	0.000	0.000	0.000	0.943	Paved parking, Roof	1S		
0.738	0.000	0.000	0.000	0.000	0.738	Paved roads w/curbs & sewers	7S,		
							8S		
0.421	0.000	0.000	0.000	0.000	0.421	Roofs	1S,		
							4S		
0.119	0.000	0.000	0.000	0.000	0.119	Unconnected pavement	4S		
0.281	0.000	0.000	0.000	0.000	0.281	Unconnected roofs	6S		
2.340	1.038	0.000	0.000	0.000	3.378	TOTAL AREA			

Analysis Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 04015 © 2020 HydroCAD Software Solutions LLC	Printed 6/22/2021 Page 6
Pipe Listing (all nodes)	

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
1	9P	300.00	300.00	10.0	0.0000	0.013	8.0	0.0	0.0
2	12P	300.00	300.00	10.0	0.0000	0.013	8.0	0.0	0.0

Analysis			Type III 2	24-hr 25-Ye	ear Rainfall	=6.15"
Prepared by {enter your HydroCAD® 10 00-26 s/n 0/	company name	here}	lutions LLC		Printed 6/2	2/2021 Page 7
<u> </u>						r ago r
-	Time span=5.00	-20.00 hrs, dt=0.0	05 hrs, 301 poi	ints		
۲ Reach routir	a by Stor-Ind+Tr	-20 method, UH= ans method - Po	ond routing by	Stor-Ind met	hod	
	.g b) blo: iiid iii		ina roanig 2)			
Subcatchment 1S: Existi	ng Site	Runoff Area=57,	500 sf 92.80% Tc=6.0 min (Impervious CN=95 Runo	Runoff Dept off=7.62 cfs (h>5.22").574 af
Subcatchment 4S: Propo	sed	Runoff Area=45.	270 sf 72.71%	Impervious	Runoff Dept	h>3.88"
			Tc=6.0 min 0	CN=82 Runo	off=4.87 cfs ().336 af
Subcatchment 6S: DPOP		Runoff Area=12.2	30 sf 100 00%	Impervious	Runoff Dent	h>5 47"
oubcatchinicht oo. I Nor	DEDG	1.000 12,2	Tc=6.0 min (CN=98 Runo	off=1.65 cfs ().128 af
0		Dunoff Area-16.0	70 of 100 00%	Imponiouo	Dunoff Dont	65 E 17"
Subcatchment / 5: 51 KEI	= 1	Runon Area-10,0	Tc=6.0 min (CN=98 Runo	off=2.17 cfs (0.168 af
Subcatchment 8S: STREI	ET	Runoff Area=16,0	Tc=6.0 min (Impervious CN=98 Runo	Runoff Dept	h>5.47") 168 af
Reach 3R: Outlet				Inflo	w=9.79 cfs (0.742 af
				Outilo	W-9.79 CIS (J.742 di
Reach 5R: (new Reach)				Inflo	w=8.36 cfs	0.560 af
				Outflo	w=8.36 cfs ().560 af
Pond 9P: IP1		Peak Elev=3	01.69' Storage	=108 cf Inflo	w=1.65 cfs ().128 af
	Discarded=0.03 c	fs 0.034 af Prima	ary=1.54 cfs 0.0	094 af Outflo	w=1.57 cfs ().128 af
Pond 12P: IP1		Peak Elev=3	01.54' Storage	=115 cf Inflo	w=1.54 cfs ().094 af
	Discarded=0.03 c	fs 0.021 af Prima	ary=1.46 cfs 0.0	073 af Outflo	w=1.49 cfs ().094 af
Pond 13P IP1		Peak Elev=3	02 18' Storage	=164 cf Inflo	w=1.46 cfs () 073 af
	Discarded=0.03 c	fs 0.017 af Prima	ary=1.41 cfs 0.0	056 af Outflo	w=1.44 cfs ().073 af

 Total Runoff Area = 3.378 ac
 Runoff Volume = 1.374 af
 Average Runoff Depth = 4.88"

 11.21% Pervious = 0.379 ac
 88.79% Impervious = 2.999 ac

Ana Prep <u>Hydr</u>	oar oC/	sis ed	s by ® 10	{en).00	ter : -26	you s/n (r com)4015	pany © 202	name 10 Hydi	e her	e} D Softw	/are So	lution	Type	III 2	4-hr 2	25-Ye	e <i>ar Ra</i> Printe	a <i>infall=6.15"</i> d 6/22/2021 Page 8
							Sum	mary	/ for	Sub	catch	ment	1 S :	Exis	sting	g Site	!		
Rune	off		=		7.	.62 (cfs @	12.0	9 hrs,	Volu	ume=		0.57	74 af,	Dep	th> 5	.22"		
Runo Type	off I e III	by 24	SC: I-hr	S TI 25	R-20 -Yea) me ar Ra	thod, ainfall:	UH=S =6.15'	SCS, V	Veigh	ted-Cl	N, Tim	e Spa	an= 5	.00-2	0.00 h	ırs, dt	= 0.05	hrs
	4	Are	ea (s	sf)	CI	N	Descr	iption											
			4,14	10	6	1	>75%	Gras	s cove	er, Go	ood, H	SG B							
•		4	1,0 2.29	70 90	9	8 8	Paveo	а parк HSC	ing, R S A	.00î, l	ISG B	i							
		5	7,50	00	9	5	Weigh	nted A	verag	е									
		5	4,14 3 36	40 30			7.20%	% Perv % Imr	ious A	Area	22								
		0	0,00	50			52.00	70 IIII		u3 / 1	ca								
(m	Tc (nin		Len	gth	S	lope	e Vel	locity	Cap	acity	Desc	cription	1						
	6.0		(10	et)		(IVIL	<u>) (n</u>	/300/		(013)	Dire	ct Ent	ry,						
								-						_					
								Su	bcat	chm	ent 1	S: Ex	istir	ng Si	te				
		/	_					1	!	Hydro	graph			1		1	1	!	1
	8-	[, /							F	7 62	cfs				+				Runoff
	Ĩ														Τv	be II	24	hr	
	7-	ľ										25	5-Ye	ar F	Rain	fall	=6.1	5"	
	6-	/		-i-				· i ·		i		R	unc	off Δ	rea	=57	500	sf	
		1										Dur	∿∩ff	- \/_	iim	_0, 0	571	of.	
fs)	5	ľ										Nui	D.,	nof	uni F Dz	c-u.	514	ai 2"	
o) w	4-	/							-!			 	КU			spui - C	>5.2	∠	
Ę										1. K	1			 	¦	С=0	.0 m		
	3-	ľ							1		M				1		ÇN=	95	
	2-	/						- +		÷Ζ	-1-1				1 1 1		<u> </u>		
									_	1	12	 +			 +			 	
	1-	ľ							m			TIT	m		1			1	
	0-					///				<u> </u>	<u>/ </u>			Шļ	<u> </u>	////	/////		1
		5	ė	6	7	ģ	9	10	11	12 Time	13 (hours)	14	15	16	17	18	19	20	

Analysis Type III 24-hr 25-Year Rainfall=6.15" Analysis Type III 24-hr 25-Year Rainfall=6.15" Prepared by {enter your company name here} Printed 6/22/2021 Prepared by {enter your company name here} Printed 6/22/2021 HydroCAD® 10.00-26 s/n 04015 © 2020 HydroCAD Software Solutions LLC Page 9 Prepared by {enter your company name here} Printed 6/2	all=6.15" 3/22/2021 Page 10
Summary for Subcatchment 4S: Proposed Summary for Subcatchment 6S: PROP BLDG	
Runoff = 4.87 cfs @ 12.09 hrs, Volume= 0.336 af, Depth> 3.88" Runoff = 1.65 cfs @ 12.09 hrs, Volume= 0.128 af, Depth> 5.47"	
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.15"	3
Area (sf) CN Description Area (sf) CN Description	
12,354 39 >75% Grass cover, Good, HSG A 12,230 98 Unconnected roofs, HSG A	
21,655 98 Paved parking, HSG A 12,230 100.00% Impervious Area 5,200 98 Unconnected pavement, HSG A 12,230 100.00% Unconnected 6,061 98 Roofs, HSG A 12,230 100.00% Unconnected	
45,270 82 Weighted Average Tc Length Slope Velocity Capacity Description	
32,016 72.71% Impervious Area 5 200 15 80% 6.0 Direct Entry,	
Ta Langth Slane Velocity Capacity Description Subcatchment 6S: PROP BLDG	
(min) (feet) (ft/ft) (ft/sec) (cfs) (ft/sec) (cfs)	
$\frac{1}{60} (100) ($	Runoff

Analysis	Type III 24-hr 25-Year Rainfall=6.15"
Prepared by {enter your company name here}	Printed 6/22/2021
HvdroCAD® 10.00-26 s/n 04015 © 2020 HvdroCAD Software Solution	ns LLC Page 13

Summary for Reach 3R: Outlet

Inflow Area	a =	1.689 ac, 9	4.37% Imp	ervious,	Inflow De	pth >	5.27	7" for 25-	Year event
Inflow	=	9.79 cfs @	12.09 hrs,	Volume	=	0.742 a	af		
Outflow	=	9.79 cfs @	12.09 hrs,	Volume	=	0.742 a	af, A	Atten= 0%,	Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Analysis	Type III 24-hr 2	25-Year Rainfall=6.15"
Prepared by {enter your company name here}		Printed 6/22/2021
HydroCAD® 10.00-26 s/n 04015 © 2020 HydroCAD Software Solution	is LLC	Page 14

Summary for Reach 5R: (new Reach)

Inflow Are	ea =	1.689 ac, 83.21% Impervious,	Inflow Depth > 3.9	8" for 25-Year event
Inflow	=	8.36 cfs @ 12.09 hrs, Volume	= 0.560 af	
Outflow	=	8.36 cfs @ 12.09 hrs, Volume	= 0.560 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Prepare HydroCA	ed by {enter D® 10.00- <u>26</u>	your compa s/n 04015_© :	ny nam 2020 Hy	ne here} droCAD Softwa	re Solutions LLC	Printed 6/22/2021 Page 15
			Sun	nmary for P	ond 9P: IP1	Ĩ
Inflow A Inflow Outflow Discarde Primary	rea = 0 = 1. = 1. ed = 0. = 1.	.281 ac,100. 65 cfs @ 1: 57 cfs @ 1: 03 cfs @ 1: 54 cfs @ 1: pathod Time	.00% Im 2.09 hrs 2.11 hrs 2.11 hrs 2.11 hrs	pervious, Inflo s, Volume= s, Volume= s, Volume= s, Volume=	ow Depth > 5.47" 0.128 af 0.128 af, Atte 0.034 af 0.094 af	for 25-Year event n= 5%, Lag= 1.4 min
Peak El	ev= 301.69' @) 12.11 hrs	Surf.Ar	ea= 154 sf S	torage= 108 cf	
Center-o	w detention t of-Mass det. t	me= 1.9 min me= 1.5 min Avail Sto	n calcula n (735.6 prage	ated for 0.127 a 5 - 734.0) Storage Descr	af (100% of inflow)	
Volume #1	w detention t of-Mass det. t <u>Invert</u> 300.00'	ime= 1.9 min ime= 1.5 min <u>Avail.Sto</u> 3-	n calcula n (735.6 <u>prage (</u> 42 cf <i>f</i>	ated for 0.127 a 5 - 734.0) <u>Storage Descr</u> 1 4.00'D x 6.00	af (100% of inflow) iption 'H Vertical Cone/C y	ylinder
Volume #1 #2	w detention t of-Mass det. t <u>Invert</u> 300.00' 300.00'	me= 1.9 mir me= 1.5 mir <u>Avail.Sto</u> 3	n calcula n (735.6 <u>prage (</u> 42 cf (42 cf (ated for 0.127 a 5 - 734.0) Storage Descri 14.00'D x 6.00 924 cf Overall 3.00'D x 6.00'I 69 cf Overall -	af (100% of inflow) iption 'H Vertical Cone/Cy - 69 cf Embedded = H Vertical Cone/Cy 5.0" Wall Thickness	ylinder 854 cf x 40.0% Voids li nder Inside #1 = 42 cf
Volume #1 #2	w detention t of-Mass det. t <u>Invert</u> 300.00' 300.00'	me= 1.9 mir ime= 1.5 mir <u>Avail.Sto</u> 3.	n calcula n (735.6 9rage (42 cf (42 cf (84 cf (ated for 0.127 a 5 - 734.0) <u>Storage Descr</u> 14.00'D x 6.00 924 cf Overall 3.00'D x 6.00'H 69 cf Overall - Total Available	af (100% of inflow) iption I'H Vertical Cone/Cy of Embedded = H Vertical Cone/Cyl 5.0" Wall Thickness a Storage	ylinder 854 cf x 40.0% Voids l inder Inside #1 = 42 cf
Volume #1 #2	w detention t of-Mass det. t <u>Invert</u> 300.00' 300.00' Routing	me= 1.9 mir me= 1.5 mir <u>Avail.Sto</u> 3.	n calcula n (735.6 42 cf (42 cf (42 cf (84 cf (0 84 cf (ated for 0.127 a 5 - 734.0) <u>Storage Descr</u> 14.00'D x 6.00' 924 cf Overall 3.00'D x 6.00' 69 cf Overall - Total Available : Devices	af (100% of inflow) iption "H Vertical Cone/Cy - 69 cf Embedded = H Vertical Cone/Cy 5.0" Wall Thickness 2 Storage	ylinder 854 cf x 40.0% Voids inder Inside #1 = 42 cf
Volume #1 #2 Device #1	w detention t of-Mass det. t 300.00' 300.00' <u>Routing</u> Primary	me= 1.9 mir ime= 1.5 mir <u>Avail.Sto</u> 3.	n calcula n (735.6 42 cf 42 cf 84 cf 84 cf 0utlet 8.0" I L= 10. Inlet /	ated for 0.127 (5 - 734.0) Storage Descr 14.00'D x 6.00 924 cf Overall 924 cf Overall - 100 x 6.00'l 69 cf Overall - Total Available <u>Covices</u> Round Culver 0' CPP, proje Outlet Invert=	af (100% of inflow) iption I'H Vertical Cone/Cy - 69 cf Embedded = H Vertical Cone/Cyl 5.0" Wall Thickness a Storage t ecting, no headwall, 300_00' / 300.00' S	ylinder 854 cf x 40.0% Voids linder Inside #1 = 42 cf Ke= 0.900 ≈ 0.0000 '/' Cc= 0.900
Hug-FlC Center-(<u>Volume</u> #1 #2 <u>Device</u> #1 #2	w detention t of-Mass det. t <u>Invert</u> 300.00' 300.00' <u>Routing</u> Primary Discarded	me= 1.9 mir me= 1.5 mir <u>Avail.Sto</u> 3: <u>3:</u> <u>1nvert</u> 3:00.00' 3:00.00'	a calcula (735.6 rage (42 cf (42 cf (842 cf (842 cf (84 cf (0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	ated for 0.127 (5 - 734.0) Storage Descr 14.00'D x 6.00'D 924 cf Overall 3.00'D x 6.00'I 69 cf Overall - Total Available : Devices Round Culver .0' CPP, proje Outlet Invert= 13 Corrugate in/nr Exfiltrat uctivity to Grou	af (100% of inflow) iption I'H Vertical Cone/Cyl 5.0" Wall Thickness Storage t ecting, no headwall, 300.00' / 300.00' S id PE, smooth interior ion over Surface au Indwater Elevation =	Vinder 854 cf x 40.0% Voids linder Inside #1 = 42 cf Ke= 0.900 = 0.0000 '/' Cc= 0.900 or, Flow Area= 0.35 sf rea : 220.00'

			Sum	mary for Pond	12P: IP1	
Inflow A	rea = 0	.281 ac,100.	00% Imj	pervious, Inflow De	epth > 4.01" for	25-Year event
Inflow	= 1.	54 cfs @ 12	2.11 hrs	, Volume=	0.094 af	40/ 1 4 7 1
Discord	= 1.	49 cfs @ 12	2.14 hrs	, Volume=	0.094 at, Atten=	4%, Lag= 1.7 min
Primary	eu – 0. = 1	46 cfs @ 12	2.14 1115 2 14 hrs	Volume=	0.021 ai	
i iiiiai y			2.111110	, volumo	0.070 41	
Routing	by Stor-Ind m	ethod, Time	Span=	5.00-20.00 hrs, dt=	0.05 hrs	
Peak El	ev= 301.54' @) 12.14 hrs	Surf.Are	ea= 154 sf Storage	e= 115 cf	
					00/ - 6 : 6)	
Plug-Flo	ow detention ti	me= 1.9 min	i calcula			
	of Maaa dat ti		(701 0	720 0)		
Center-t	of-Mass det. ti	me= 1.8 min	(731.9	- 730.0)	o /o or innow)	
Volume	of-Mass det. ti Invert	me= 1.8 min Avail.Sto	rage S	- 730.0) Storage Description	o to or innowy	
Volume #1	of-Mass det. ti Invert 300.00'	me= 1.8 min <u>Avail.Sto</u> 28	rage <u>8</u> 81 cf 1	- 730.0) <u>Storage Description</u> 4.00'D x 6.00'H Ve	ertical Cone/Cylin	der
Volume #1	of-Mass det. ti Invert 300.00'	me= 1.8 min <u>Avail.Sto</u> 28	rage <u>S</u> 81 cf 1	- 730.0) <u>Storage Description</u> 4.00'D x 6.00'H Ve 124 cf Overall - 220	ertical Cone/Cylin of Embedded = 7(der 04 cf x 40.0% Voids
Volume #1 #2	of-Mass det. ti Invert 300.00' 300.00'	me= 1.8 min <u>Avail.Sto</u> 28	rage <u>S</u> 81 cf 1 70 cf 6	- 730.0) Storage Description 4.00'D x 6.00'H Ve 24 cf Overall - 220 .00'D x 6.00'H Ver	ertical Cone/Cylin of Embedded = 7(tical Cone/Cylind	der 04 cf x 40.0% Voids er Inside #1
<u>Volume</u> #1 #2	of-Mass det. ti Invert 300.00' 300.00'	me= 1.8 min <u>Avail.Sto</u> 28	rage <u>S</u> 81 cf 1 70 cf 6 2	- 730.0) Storage Description 4.00'D x 6.00'H Ver 24 cf Overall - 220 .00'D x 6.00'H Ver 20 cf Overall - 5.0"	ertical Cone/Cylin cf Embedded = 7(tical Cone/Cylind Wall Thickness =	der D4 cf x 40.0% Voids I er Inside #1 170 cf
<u>Volume</u> #1 #2	of-Mass det. ti <u>Invert</u> 300.00' 300.00'	me= 1.8 min <u>Avail.Sto</u> 28 17 48	rage <u>5</u> 81 cf <u>1</u> 970 cf <u>6</u> 251 cf T	Storage Description 4.00'D x 6.00'H Ve 24 cf Overall - 220 00'D x 6.00'H Ve 20 cf Overall - 5.0" oct Available Storage	ertical Cone/Cylin of Embedded = 7(tical Cone/Cylind Wall Thickness = age	der D4 cf x 40.0% Voids I er Inside #1 170 cf
Volume #1 #2 	of-Mass det. ti Invert 300.00' 300.00' Routing	me= 1.8 min <u>Avail.Sto</u> 28 17 48 Invert	rage <u>5</u> 81 cf <u>1</u> 70 cf <u>6</u> 51 cf 1 51 cf 1	Storage Description 4.00'D x 6.00'H Ve 24 cf Overall - 220 00'D x 6.00'H Ver 20 cf Overall - 5.0" Total Available Stora Devices	ertical Cone/Cylin cf Embedded = 7(tical Cone/Cylind Wall Thickness = age	der D4 cf x 40.0% Voids I er Inside #1 170 cf
<u>Volume</u> #1 #2 <u>Device</u> #1	of-Mass det. ti Invert 300.00' 300.00' Routing Primary	me= 1.8 min <u>Avail.Sto</u> 28 17 45 <u>Invert</u> 300.00'	rage <u>5</u> <u>rage 5</u> <u>31 cf 1</u> <u>51 cf 6</u> <u>51 cf 7</u> <u>Outlet</u> 8.0" F	Storage Description 4.00'D x 6.00'H Ve 24 cf Overall - 220 00'D x 6.00'H Ver 20 cf Overall - 5.0" Total Available Stor Devices Cound Culvert	ertical Cone/Cylin of Embedded = 7(tical Cone/Cylind Wall Thickness = age	der D4 cf x 40.0% Voids I er Inside #1 170 cf
Volume #1 #2 Device #1	of-Mass det. ti <u>Invert</u> 300.00' 300.00' <u>Routing</u> Primary	me= 1.8 min Avail.Sto 28 17 45 <u>Invert</u> 300.00'	rage <u>S</u> rage <u>S</u> B1 cf <u>1</u> S 70 cf <u>6</u> 2 51 cf T <u>Outlet</u> 8.0" F L= 10.	Storage Description 4.00'D x 6.00'H Ve 24 cf Overall - 220 .00'D x 6.00'H Ve 20 cf Overall - 5.0" Total Available Stora Devices Sound Culvert 0' CPP, projecting	ertical Cone/Cylin cf Embedded = 7(tical Cone/Cylind Wall Thickness = age	der 04 cf x 40.0% Voids ler Inside #1 170 cf = 0.900
Volume #1 #2 Device #1	of-Mass det. ti Invert 300.00' 300.00' <u>Routing</u> Primary	me= 1.8 min <u>Avail.Sto</u> 28 17 45 <u>17</u> 45 45 45 300.00'	rage <u>S</u> and C (731.9 rage <u>S</u> and C (731.9 S and C (731.9 and C (731.9) and C (731.9 and C (731.9) and C (731.9) a	Storage Description 4.00'D x 6.00'H Ve 124 cf Overall - 220 .00'D x 6.00'H Ve 120 cf Overall - 5.0" Total Available Stora Devices Cound Culvert 0' CPP, projecting Outlet Invert= 300.0	rrtical Cone/Cylin of Embedded = 7(tical Cone/Cylind Wall Thickness = age , no headwall, Ke 00' / 300.00' S= 0	der 04 cf x 40.0% Voids ler Inside #1 170 cf = 0.900 .0000 '/' Cc= 0.900
Volume #1 #2 Device #1	of-Mass det. ti Invert 300.00' 300.00' Routing Primary	me= 1.8 min Avail.Sto 28 17 48 <u>17</u> 48 48 300.00'	rage (731.9 rage <u>8</u> 81 cf 1 970 cf 6 22 51 cf 1 0 0utlet 8.0" F L= 10. Inlet / ' n= 0.0	Storage Description 4.00'D x 6.00'H Ve 24 cf Overall - 220 00'D x 6.00'H Ver 20 cf Overall - 5.0" Total Available Store Devices cound Culvert 0' CPP, projecting Outlet Invert= 300.0 13 Corrugated PE	ertical Cone/Cylin cf Embedded = 7(tical Cone/Cylind Wall Thickness = age I, no headwall, Ke 00' / 300.00' S= 0 , smooth interior, 1	der 24 cf x 40.0% Voids ler Inside #1 170 cf = 0.900 .0000 '/ Cc= 0.900 Flow Area= 0.35 sf
Volume #1 #2 Device #1 #2	of-Mass det. ti Invert 300.00' 300.00' Routing Primary Discarded	me= 1.8 min <u>Avail.Sto</u> 28 17 45 <u>45</u> 300.00' 300.00'	rage <u>5</u> rage <u>5</u> 81 cf <u>1</u> 970 cf <u>6</u> 270 cf <u>7</u> 251 cf <u>1</u> 0utlet 8.0" F L= 10. Inlet / 1 n= 0.0 8.210	Storage Description 4.00'D x 6.00'H Ve 24 cf Overall - 220 5.00'D x 6.00'H Ver 20 cf Overall - 5.0" Total Available Store Devices 50000 Culvert 0' CPP, projecting 0utlet Invert = 300.0 13 Corrugated PE, in/hr Exfiltration o	ertical Cone/Cylin cf Embedded = 7(tical Cone/Cylind Wall Thickness = age , no headwall, Ke 00' / 300.00' S= 0 , smooth interior, 1 ver Surface area	der 24 cf x 40.0% Voids ler Inside #1 170 cf = 0.900 .0000 '/ Cc= 0.900 Flow Area= 0.35 sf
Volume #1 #2 Device #1 #2	of-Mass det. ti Invert 300.00' 300.00' Routing Primary Discarded	me= 1.8 min <u>Avail.Sto</u> 28 17 45 <u>Invert</u> 300.00' 300.00'	rage (731.9 rage S 81 cf 1 570 cf 6 2 551 cf 1 0utlet L= 10. Inlet / n= 0.0 8.210 Condu	Storage Description 4.00'D x 6.00'H Ve 24 cf Overall - 220 00'D x 6.00'H Ver 20 cf Overall - 5.0" Total Available Store Devices Round Culvert 0' CPP, projecting Dutlet Invert= 300.0 13 Corrugated PE, in/hr Exfiltration o ctivity to Groundward	ertical Cone/Cylin cf Embedded = 7(tical Cone/Cylind Wall Thickness = age 0, no headwall, Ke 00' / 300.00' S= 0 , smooth interior, 1 ver Surface area ater Elevation = 22	der 24 cf x 40.0% Voids ler Inside #1 170 cf = 0.900 .0000 '/' Cc= 0.900 Flow Area= 0.35 sf 0.00'
Volume #1 #2 Device #1 #2	of-Mass det. ti Invert 300.00' 300.00' Routing Primary Discarded	me= 1.8 min <u>Avail.Sto</u> 28 17 45 <u>Invert</u> 300.00' 300.00'	rage (731.9 rage S 81 cf 1 970 cf 6 251 cf 1 551 cf 1 0utlet 8.0" F L= 10. Inlet / 1 n= 0.0 8.210 Condu	Storage Description 4.00'D x 6.00'H Ve 24 cf Overall - 220 .00'D x 6.00'H Ve 20 cf Overall - 5.0" Total Available Store Devices Sound Culvert 0' CPP, projecting Outlet Invert= 300.0 13 Corrugated PE, n/hr Exfiltration o ctivity to Groundwa 14 bro. HW=204.60	ertical Cone/Cylin of Embedded = 7(tical Cone/Cylind Wall Thickness = age I, no headwall, Ke 00' / 300.00' S= 0 , smooth interior, I wer Surface area ater Elevation = 22	der 04 cf x 40.0% Voids ler Inside #1 170 cf = 0.900 .0000 '/' Cc= 0.900 Flow Area= 0.35 sf 0.00'

Prepare HydroCA	ed by {enter	your compar s/n 04015 © 2	ny nar 2020 Hy	ne here} ydroCAD Software	Solutions LLC	Printed 6/22/2021 Page 21
			Sun	nmary for Por	d 13P: IP1	
nflow A	rea =	0.281 ac,100.0	00% In	npervious, Inflow	Depth > 3.12" for 25	5-Year event
nflow	= 1	.46 cfs @ 12	2.14 hr	rs, Volume=	0.073 af	
Discard	- = be	.44 CTS @ 12	2.14 Nr 2.14 hr	s, volume=	0.073 af, Atten= 1%	, Lag= 0.1 min
Primarv	= 1	41 cfs @ 12	2.14 m 2 14 hr	s Volume=	0.056 af	
Peak El	ev= 302.18'	@ 12.14 hrs time= 12.4 mi	Surf.A	= 5.00-20.00 hrs, .rea= 154 sf Sto ulated for 0.073 a	rage= 164 cf f (100% of inflow)	
Peak El Plug-Flo Center-o <u>/olume</u> #1	ev= 302.18 w detention of-Mass det. <u>Invert</u> 300.00'	@ 12.14 hrs time= 12.4 mi time= 12.4 mi <u>Avail.Stor</u> 28	Surf.A Surf.A in calcu in (742 rage 31 cf	= 5.00-20.00 hrs, rea= 154 sf Sto ulated for 0.073 a 2.0 - 729.5) <u>Storage Descrip</u> 14.00'D x 6.00'H	ion ivertical Cone/Cylinde	r
Peak El Plug-Flo Center-o <u>/olume</u> #1 #2	ev= 302.18 w detention of-Mass det. <u>Invert</u> 300.00' 300.00'	@ 12.14 hrs time= 12.4 mi time= 12.4 mi <u>Avail.Stor</u> 28 17	Surf.A Surf.A in calcu in (742 rage 31 cf 70 cf	= 5.00-20.00 hrs, rea= 154 sf Sto ulated for 0.073 a 2.0 - 729.5) Storage Descript 14.00'D x 6.00'H 924 cf Overall - 2 6.00'D x 6.00'H	iange= 164 cf f (100% of inflow) ion i Vertical Cone/Cylinde 220 cf Embedded = 704 Vertical Cone/Cylinde	r cf x 40.0% Voids nside #1
Peak El Plug-Flc Center-c <u>/olume</u> #1 #2	ev= 302.18' ow detention of-Mass det. Invert 300.00' 300.00'	@ 12.14 hrs time= 12.4 mi time= 12.4 mi <u>Avail.Stor</u> 28 17 45	Span- Surf.A in calcu in (742 rage 31 cf 70 cf 51 cf	 5.00-20.00 hrs, rea= 154 sf Sto ulated for 0.073 a 2.0 - 729.5) Storage Descripf 14.00'D x 6.00'H 924 cf Overall - 2 6.00'D x 6.00'H 220 cf Overall - 5 Total Available S 	iange= 164 cf f (100% of inflow) ion I Vertical Cone/Cylinde 220 cf Embedded = 704 Vertical Cone/Cylinder 5.0" Wall Thickness = 17 itorage	r cf x 40.0% Voids Inside #1 0 cf
Peak El- Plug-Flc Center-c #1 #2	ev= 302.18' w detention of-Mass det. <u>Invert</u> 300.00' 300.00'	@ 12.14 hrs time= 12.4 mi time= 12.4 mi <u>Avail.Stor</u> 28 17 45	Span- Surf.A in calcu in (742 rage 31 cf 70 cf 51 cf	= 5.00-20.00 hrs, rea= 154 sf Sto ulated for 0.073 a 2.0 - 729.5) Storage Descripf 14.00'D x 6.00'H 924 cf Overall - 2 6.00'D x 6.00'H 220 cf Overall - 5 Total Available S	ian Unit of the second	r cf x 40.0% Voids Inside #1 0 cf
Peak Eli Plug-Flc Center-c #1 #2 <u>Device</u>	ev= 302.18' over the second se	@ 12.14 hrs time= 12.4 mi time= 12.4 mi Avail.Stor 28 17 45 Invert	Span- Surf.A in calcu rage 31 cf 70 cf 51 cf Outle	= 5.00-20.00 hrs, rea= 154 sf Sto ulated for 0.073 a 2.0 - 729.5) Storage Descripf 14.00'D x 6.00'H 924 cf Overall - { 6.00'D x 6.00'H 220 cf Overall - { Total Available S at Devices	iange= 164 cf f (100% of inflow) ion I Vertical Cone/Cylinde 220 cf Embedded = 704 Vertical Cone/Cylinder 5.0" Wall Thickness = 17 itorage	r cf x 40.0% Voids Inside #1 0 cf
Peak Eli Plug-Flc Center-c #1 #2 <u>Device</u> #1	ev= 302.18' over detention of-Mass det. Invert 300.00' 300.00' Routing Discarded	@ 12.14 hrs time= 12.4 mi time= 12.4 mi 28 17 28 17 45 <u>Invert</u> 300.00'	Surf.A Surf.A in calcu in (742 rage 31 cf 70 cf 51 cf 51 cf 8.210 Cond	= 5.00-20.00 hrs, rea= 154 sf Sto ulated for 0.073 a 2.0 - 729.5) Storage Descripf 14.00'D x 6.00'H 924 cf Overall - { 6.00'D x 6.00'H 220 cf Overall - { Total Available S at Devices D in/hr Exfiltratio	iage = 164 cf f (100% of inflow) ion I Vertical Cone/Cylinde 220 cf Embedded = 704 Vertical Cone/Cylinder 5.0" Wall Thickness = 17 itorage	r cf x 40.0% Voids Inside #1 0 cf

Primary OutFlow Max=1.40 cfs @ 12.14 hrs HW=302.18' (Free Discharge) -2=Orifice/Grate (Orifice Controls 1.40 cfs @ 2.02 fps)

HydroCAD Analysis

Existing & Proposed Conditions - 100 Year Storm

Analysis	
Prepared by {enter your company name here}	Printed 6/22/2021
HydroCAD® 10.00-26 s/n 04015 © 2020 HydroCAD Software Solutions LLC	Page 2

Project Notes

Rainfall events imported from "Analysis 12-6-2017.hcp"

Analysis Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 04015 © 2020 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Printed 6/22/2021

Page 3

Area (acres)	CN	Description (subcatchment-numbers)
0.284	39	>75% Grass cover, Good, HSG A (4S)
0.095	61	>75% Grass cover, Good, HSG B (1S)
0.497	98	Paved parking, HSG A (4S)
0.943	98	Paved parking, Roof, HSG B (1S)
0.738	98	Paved roads w/curbs & sewers, HSG A (7S, 8S)
0.421	98	Roofs, HSG A (1S, 4S)
0.119	98	Unconnected pavement, HSG A (4S)
0.281	98	Unconnected roofs, HSG A (6S)
3.378	92	TOTAL AREA

Analysis	
Prepared by {enter your company name here}	Printed 6/22/2021
HydroCAD® 10.00-26 s/n 04015 © 2020 HydroCAD Software Solutions LLC	Page 4
	-

Soil Listing (all nodes)

Area (acres)	Soil Group	Subcatchment Numbers
2.340	HSG A	1S, 4S, 6S, 7S, 8S
1.038	HSG B	1S
0.000	HSG C	
0.000	HSG D	
0.000	Other	
3.378		TOTAL AREA

pared by roCAD® 10	ared by {enter your company name here} Printed 6/22/20 vCAD® 10.00-26 s/n 04015 © 2020 HydroCAD Software Solutions LLC Page											
Ground Covers (all nodes)												
HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment					
(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers					
0.284	0.095	0.000	0.000	0.000	0.379	>75% Grass cover, Good	1S,					
							4S					
0.497	0.000	0.000	0.000	0.000	0.497	Paved parking	4S					
0.000	0.943	0.000	0.000	0.000	0.943	Paved parking, Roof	1S					
0.738	0.000	0.000	0.000	0.000	0.738	Paved roads w/curbs & sewers	7S,					
							8S					
0.421	0.000	0.000	0.000	0.000	0.421	Roofs	1S,					
							4S					
0.119	0.000	0.000	0.000	0.000	0.119	Unconnected pavement	4S					
0.281	0.000	0.000	0.000	0.000	0.281	Unconnected roofs	6S					
2.340	1.038	0.000	0.000	0.000	3.378	TOTAL AREA						

Analysis Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 04015 © 2020 HydroCAD Software Solutions LLC	Printed 6/22/2021 Page 6
Pipe Listing (all nodes)	

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
1	9P	300.00	300.00	10.0	0.0000	0.013	8.0	0.0	0.0
2	12P	300.00	300.00	10.0	0.0000	0.013	8.0	0.0	0.0

Analysis Prepared by {enter your HydroCAD® 10.00-26 s/n 04	company name 1015 © 2020 Hydro	Type III 24-hr 100-Year Rainfall=8.80" here} Printed 6/22/2021 oCAD Software Solutions LLC Page 7
F Reach routi	Time span=5.00- Runoff by SCS TR- ng by Stor-Ind+Tra	0-20.00 hrs, dt=0.05 hrs, 301 points R-20 method, UH=SCS, Weighted-CN rans method - Pond routing by Stor-Ind method
Subcatchment 1S: Existin	ng Site	Runoff Area=57,500 sf 92.80% Impervious Runoff Depth>7.65" Tc=6.0 min CN=95 Runoff=11.03 cfs 0.842 af
Subcatchment 4S: Propo	sed	Runoff Area=45,270 sf 72.71% Impervious Runoff Depth>6.25" Tc=6.0 min CN=82 Runoff=7.67 cfs 0.541 af
Subcatchment 6S: PROP	BLDG	Runoff Area=12,230 sf 100.00% Impervious Runoff Depth>7.87" Tc=6.0 min CN=98 Runoff=2.37 cfs 0.184 af
Subcatchment 7S: STRE	ET	Runoff Area=16,070 sf 100.00% Impervious Runoff Depth>7.87" Tc=6.0 min CN=98 Runoff=3.11 cfs 0.242 af
Subcatchment 8S: STRE	ET	Runoff Area=16,070 sf 100.00% Impervious Runoff Depth>7.87" Tc=6.0 min CN=98 Runoff=3.11 cfs 0.242 af
Reach 3R: Outlet		Inflow=14.14 cfs 1.084 af Outflow=14.14 cfs 1.084 af
Reach 5R: (new Reach)		Inflow=12.48 cfs 0.881 af Outflow=12.48 cfs 0.881 af
Pond 9P: IP1	Discarded=0.03 cf	Peak Elev=302.99' Storage=191 cf Inflow=2.37 cfs 0.184 af cfs 0.036 af Primary=2.17 cfs 0.148 af Outflow=2.20 cfs 0.184 af
Pond 12P: IP1	Discarded=0.03 cf	Peak Elev=302.63' Storage=198 cf Inflow=2.17 cfs 0.148 af cfs 0.027 af Primary=2.01 cfs 0.120 af Outflow=2.04 cfs 0.148 af
Pond 13P: IP1	Discarded=0.03 cf	Peak Elev=302.35' Storage=177 cf Inflow=2.01 cfs 0.120 af cfs 0.022 af Primary=1.98 cfs 0.098 af Outflow=2.01 cfs 0.120 af

 Total Runoff Area = 3.378 ac
 Runoff Volume = 2.052 af
 Average Runoff Depth = 7.29"

 11.21% Pervious = 0.379 ac
 88.79% Impervious = 2.999 ac

Analys Prepare HydroCA	s is ed by {er \ <u>D® 10.00</u>	iter you -26_s/n	ur com 04015	pany © 2020	name) Hydro	here CAD	} Softwa	are So	7 Iution	ype l	11 24	-hr 1	00-Ye	<i>ar Rai</i> Printed	nfall=8.80" 6/22/2021 Page 8
			Sum	mary	for S	ubc	atch	ment	1S:	Exis	sting	y Site	•		
Runoff	=	11.03	cfs @	12.09) hrs, '	Volur	ne=		0.84	42 af,	Dep	th> 7	.65"		
Runoff b Type III	by SCS T 24-hr 10	R-20 m 0-Year	ethod, Rainfal	UH=S II=8.80	CS, W)"	eight	ed-CN	I, Tim	e Spa	an= 5	.00-2	0.00 ł	nrs, dt=	= 0.05 ł	าrs
A	Area (sf)	CN	Descr	iption											
	4,140	61	>75%	Grass	s cover	, Go	od, HS	SG B							
-	41,070	98 98	Roofs	а рагкі , HSG	ng, Ro A	ot, H	SGB								
-	57,500	95	Weigh	nted A	verage										
	4,140 53,360		7.20%	9 Pervi % Imn	ious Ar	ea s Are	а								
	00,000		02.00	70 mp	orviou	0740	a								
Tc (min)	Length (feet)	Slop (ft/	be Vel ft) (ft	ocity (sec)	Capa	city cfs)	Desc	ription							
6.0	(1001)	(10)	(10	0007		5107	Direc	t Enti	у,						
12-	,	+		Su	bcatc H	hme ydrog 1.03	ent 1 ^{raph}	S: Ex	istir	ng Si	te	 			Runoff
11-		+	!	+				+		 	Тy	pe II	1 24-	hr	
10-		+						100)-Ye	ar I	Raiı	nfall	=8.8	0"	
9-		<u>+</u>		i 				R	uno	ff_A	rea	=57	,500	sf	
8-		+		¦				Rur	off	Vol	um	e=0	842	af	
(cts)	·	+						+	Ru	nof	f De	pth	>7.6	5"	
NO 6-	·			+				+		 	7	- C=6	.0 m	in-	
5		+		 +	 -	_X		+		 			CN-	95	
4		+	 	 		A		 		 			UI1	50	
3				 		И		 		 	 				
2	1														
1-			m	1111						111	1111	1			
0-1	6	7 8	3 9	10	11	12 Time	13 (hours)	14	15	16	17	18	19	20	

Analysis Type III 24-hr 100-Year Rainfall=8.80" Prepared by {enter your company name here} Printed 6/22/2021 HydroCAD® 10.00-26 s/n 04015 © 2020 HydroCAD Software Solutions LLC Page 9	Analysis Type III 24-hr 100-Year Rainfall=8.80" Prepared by {enter your company name here} Printed 6/22/2021 HydroCAD® 10.00-26 s/n 04015 © 2020 HydroCAD Software Solutions LLC Page 10
Summary for Subcatchment 4S: Proposed	Summary for Subcatchment 6S: PROP BLDG
Summary for Subcatchment 45.1 roposedRunoff = 7.67 cfs @ 12.09 hrs, Volume= 0.541 af, Depth> 6.25"Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrsType III 24-hr 100-Year Rainfall=8.80"Area (sf)CNDescription12,35439>75% Grass cover, Good, HSG A21,65598Paved parking, HSG A5,20098Unconnected pavement, HSG A45,27082Weighted Average12,35427.29% Pervious Area32,91677.21% Improving Area	Summary for Subcatchment of Tree BLDG Runoff = 2.37 cfs @ 12.09 hrs, Volume= 0.184 af, Depth> 7.87" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80" Area (sf) CN Description 12,230 98 Unconnected roofs, HSG A 12,230 100.00% Impervious Area 12,230 100.00% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
5,2015.0% UnconnectedTo (min) (feet)Stope Velocity Capacity Description (freet)6Direct Entry,Cubcatchment S: ProposedProposedOffer Capacity Description Direct Entry,Offer Capacity Description Direct Entry,Offer Capacity Description Direct Entry,Offer Capacity Description 	Subcatchment 6S: PROP BLDS Hydrograph

Page 12

Runoff

20

Analysis	Type III 24-hr 100-Year Rainfall=8.80"
Prepared by {enter your company name here}	Printed 6/22/2021
HydroCAD® 10.00-26 s/n 04015 © 2020 HydroCAD Software Solut	tions LLC Page 13

Summary for Reach 3R: Outlet

Inflow Area	a =	1.689 ac, 9	4.37% Imp	ervious,	Inflow Dept	h> 7.7	70" for 100	0-Year event
Inflow	=	14.14 cfs @	12.09 hrs,	Volume	= 1.	084 af		
Outflow	=	14.14 cfs @	12.09 hrs,	Volume	= 1.	084 af,	Atten= 0%,	Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Analysis Type III 24-h	r 100-Year Rainfall=8.80"
Prepared by {enter your company name here}	Printed 6/22/2021
HydroCAD® 10.00-26 s/n 04015 © 2020 HydroCAD Software Solutions LLC	Page 14

Summary for Reach 5R: (new Reach)

Inflow	Area =	=	1.689 ac,	83.21% Imp	ervious,	Inflow	Depth >	6.2	26" for	100)-Year	event
Inflow	=		12.48 cfs @	12.09 hrs,	Volume	=	0.881	af				
Outflov	v =		12.48 cfs @	12.09 hrs,	Volume	=	0.881	af,	Atten= ()%,	Lag=	0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

i iyuroo/	10.00-20 S		
			Summary for Pond 9P: IP1
Inflow A Inflow Outflow Discarde Primary	rea = 0.1 = 2.3 = 2.2 ed = 0.0 = 2.1	281 ac,100.00 37 cfs @ 12.0 20 cfs @ 12.1 33 cfs @ 12.1 17 cfs @ 12.1	0% Impervious, Inflow Depth > 7.87" for 100-Year event 09 hrs, Volume= 0.184 af 12 hrs, Volume= 0.184 af, Atten= 7%, Lag= 1.9 min 12 hrs, Volume= 0.036 af 12 hrs, Volume= 0.148 af
Routing	by Stor-Ind me	ethod, Time Sp	Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak El	ev= 302.99' @	12.12 115 50	Sun Area = 154 St Storage = 191 Cl
Peak Ele Plug-Flo Center-o	ev= 302.99' @ w detention tir of-Mass det. tir	ne= 1.9 min ca ne= 1.5 min (calculated for 0.183 af (100% of inflow) 734.3 - 732.8)
Peak Ele Plug-Flo Center-o	ev= 302.99' @ w detention tir of-Mass det. tir Invert	ne= 1.9 min ca ne= 1.5 min (Avail.Storag	calculated for 0.183 af (100% of inflow) 734.3 - 732.8) age Storage Description
Peak Ele Plug-Flc Center-c <u>Volume</u> #1	ev= 302.99' @ w detention tir of-Mass det. tir <u>Invert</u> 300.00'	ne= 1.9 min ca ne= 1.5 min (<u>Avail.Stora</u> 342	Aun.Area = 154 sr Storage = 191 cr calculated for 0.183 af (100% of inflow) 734.3 - 732.8) age Storage Description 2 of 14.00'D x 6.00'H Vertical Cone/Cylinder 924 of Overal - 69 of Embedded = 854 of x 40.0% Voids
Peak Ele Plug-Flo Center-o <u>Volume</u> #1 #2	ev= 302.99' @ w detention tir of-Mass det. tir <u>Invert</u> 300.00' 300.00'	ne= 1.9 min ca ne= 1.5 min (<u>Avail.Stora</u> 342	Autr.Atea = 194 st Storage = 191 ct calculated for 0.183 af (100% of inflow) .734.3 - 732.8) age Storage Description 2 cf 14.00'D x 6.00'H Vertical Cone/Cylinder 924 cf Overall - 69 cf Embedded = 854 cf x 40.0% Voids 2 cf 3.00'D x 6.00'H Vertical Cone/Cylinder 926 cf Overall - 69 cf Embedded = 854 cf x 40.0% Voids 2 of 3.00'D x 6.00'H Vertical Cone/Cylinder 69 cf Overall - 5.0" Wall Thickness = 42 cf
Peak Ele Plug-Flo Center-o <u>Volume</u> #1 #2	ev= 302.99' @ w detention tir of-Mass det. tir <u>Invert</u> 300.00' 300.00'	ne= 1.9 min ca ne= 1.5 min (<u>Avail.Storac</u> 342 42 384	Autr.Atea = 154 st Storage = 151 ct calculated for 0.183 af (100% of inflow) .734.3 - 732.8) age Storage Description 2 cf 14.00'D x 6.00'H Vertical Cone/Cylinder 924 cf Overall - 69 cf Embedded = 854 cf x 40.0% Voids 2 cf 3.00'D x 6.00'H Vertical Cone/Cylinder 924 cf Overall - 69 cf Embedded = 854 cf x 40.0% Voids 2 of 3.00'D x 6.00'H Vertical Cone/Cylinder Inside #1 69 cf Overall - 5.0" Wall Thickness = 42 cf 4 cf Total Available Storage
Peak Ele Plug-Flc Center-c <u>Volume</u> #1 #2 Device	ev= 302.99' @ w detention tir of-Mass det. tir <u>Invert</u> 300.00' 300.00' Routing	ne= 1.9 min ca ne= 1.5 min (<u>Avail.Storag</u> 342 42 384	Addi.Afea = 154 si Storage = 151 ci calculated for 0.183 af (100% of inflow) 734.3 - 732.8) Age Storage Description 2 of 14.00'D x 6.00'H Vertical Cone/Cylinder 924 cf Overall - 69 cf Embedded = 854 cf x 40.0% Voids 2 of 3.00'D x 6.00'H Vertical Cone/Cylinder Inside #1 69 cf Overall - 5.0'' Wall Thickness = 42 cf 4 of Total Available Storage Outlet Devices
Peak Ele Plug-Flc Center-o #1 #2 Device #1	ev= 302.99' @ w detention tir of-Mass det. tir <u>Invert</u> 300.00' <u>300.00'</u> <u>300.00'</u> <u>Routing</u> Primary	12.12 nrs St ne= 1.9 min ca ne= 1.5 min (* 342 42 384 Invert C 300.00' 8 L	Autr.Atea = 194 st Storage 191 ct calculated for 0.183 af (100% of inflow) .734.3 - 732.8) age Storage Description 2 cf 14.00'D x 6.00'H Vertical Cone/Cylinder .924 cf Overall - 69 cf Embedded = 854 cf x 40.0% Voids 2 cf 3.00'D x 6.00'H Vertical Cone/Cylinder Inside #1 .69 cf Overall - 5.0" Wall Thickness = 42 cf 4 cf Total Available Storage Outlet Devices 8.0" Round Culvert L = 10.0" CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 300.00' / 300.00' S= 0.0000 0'/ Cc= 0.900

			Sum	mary for Pon	d 12P: IP1		
Inflow A	rea = 0	.281 ac,100.	00% Imp	pervious, Inflow	Depth > 6.31	for 100-Year e	event
Inflow	= 2.	17 cfs @ 12	2.12 hrs,	Volume=	0.148 af		
Outflow	= 2.	.04 cfs @ 12	2.16 hrs,	Volume=	0.148 af, A	tten= 6%, Lag= 2	.2 min
Discard	ed = 0.	.03 cfs @ 12	2.16 hrs,	Volume=	0.027 af		
Primary	= 2.	.01 cts @ 12	2.16 hrs,	Volume=	0.120 af		
Routing	by Stor-Ind m	nethod. Time	Span= 5	5.00-20.00 hrs o	dt= 0.05 hrs		
Peak El	ev= 302.63' @	2 12.16 hrs	Surf.Are	a= 154 sf Stor	age= 198 cf		
					5		
Plug-Flo	w detention t	ime= 1.9 min	calculat	ed for 0.148 af ((100% of inflow)	
Center-	of-Mass det. t	ime= 1.8 min	(7220	= 0 0 4 \			
			1 (732.0	- 730.1)			
Volume	Invert	Avail.Sto	rade S	- 730.1) itorage Descripti	ion		
<u>Volume</u> #1	Invert 300.00'	Avail.Sto	rage S 81 cf 1 /	- 730.1) itorage Descripti 4.00'D x 6.00'H	ion Vertical Cone	/Cvlinder	
<u>Volume</u> #1	Invert 300.00'	Avail.Sto 28	rage <u>S</u> 81 cf 1 / 93	- 730.1) <u>torage Descripti</u> 4.00'D x 6.00'H 24 cf Overall - 2	ion Vertical Cone 20 cf Embedde	/Cylinder ed = 704 cf x 40.0	% Voids
<u>Volume</u> #1 #2	Invert 300.00' 300.00'	Avail.Sto 28	rage S 81 cf 1 92 70 cf 6	- 730.1) <u>itorage Descripti</u> 4.00'D x 6.00'H 24 cf Overall - 2 .00'D x 6.00'H \	ion Vertical Cone 20 cf Embedde /ertical Cone/0	/Cylinder ed = 704 cf x 40.0 Cylinder Inside #1	% Voids
<u>Volume</u> #1 #2	Invert 300.00' 300.00'	Avail.Sto 28	rage S 81 cf 1 92 70 cf 6	- 730.1) <u>torage Descripti</u> 4.00'D x 6.00'H 24 cf Overall - 2 .00'D x 6.00'H \ 20 cf Overall - 5	ion Vertical Cone 20 cf Embedde /ertical Cone/0 .0" Wall Thickn	/Cylinder ed = 704 cf x 40.0 Cylinder Inside #1 ess = 170 cf	% Voids
<u>Volume</u> #1 #2	Invert 300.00' 300.00'	Avail.Sto 28 11	rage S 81 cf 1 91 70 cf 6 21 51 cf T	- 730.1) torage Descripti 4.00'D x 6.00'H 24 cf Overall - 2 .00'D x 6.00'H V 20 cf Overall - 5 otal Available S	ion Vertical Cone 20 cf Embedde /ertical Cone/ .0" Wall Thickn torage	/Cylinder d = 704 cf x 40.0 Cylinder Inside #1 ess = 170 cf	% Voids
<u>Volume</u> #1 #2	Invert 300.00' 300.00'	Avail.Sto 28	rage S 81 cf 1 91 70 cf 6 21 51 cf T	- 730.1) torage Descripti 4.00'D x 6.00'H 24 cf Overall - 2 .00'D x 6.00'H V 20 cf Overall - 5 otal Available S	ion Vertical Cone 20 cf Embedde /ertical Cone/0 .0" Wall Thickn torage	/Cylinder d = 704 cf x 40.0 Cylinder Inside #1 ess = 170 cf	% Voids
Volume #1 #2 Device	Invert 300.00' 300.00' Routing	Avail.Sto 28 11 48 Invert	rage S 81 cf 1 92 70 cf 6 21 51 cf T Outlet I	- 730.1) torage Descripti 4.00'D x 6.00'H 24 cf Overall - 2 .00'D x 6.00'H 20 cf Overall - 5 otal Available S Devices	ion Vertical Cone 20 cf Embedde /ertical Cone/0 .0" Wall Thickn torage	/Cylinder d = 704 cf x 40.0 Cylinder Inside #1 ess = 170 cf	% Voids
<u>Volume</u> #1 #2 <u>Device</u> #1	Invert 300.00' 300.00' Routing Primary	Avail.Sto 24 17 45 <u>Invert</u> 300.00'	rage S B1 cf 1 92 70 cf 6 23 51 cf T 0utlet I 8.0" R	- 730.1) torage Descripti 4.00'D x 6.00'H 24 cf Overall - 2 00'D x 6.00'H V 20 cf Overall - 5 iotal Available S Devices ound Culvert	ion Vertical Cone 20 cf Embedde /ertical Cone/(.0" Wall Thickn torage	/Cylinder d = 704 cf x 40.0 Cylinder Inside #1 less = 170 cf	% Voids
Volume #1 #2 Device #1	Invert 300.00' 300.00' Routing Primary	Avail.Sto 24 17 44 <u>Invert</u> 300.00'	rage S B1 cf 1 92 70 cf 6 23 51 cf T Outlet I 8.0" R.C Index (C)	- 730.1) torage Descripti 4.00'D x 6.00'H 24 cf Overall - 2 00'D x 6.00'H \ 20 cf Overall - 5 iotal Available S Devices iound Culvert 0' CPP, project	ion Vertical Cone 20 cf Embedde /ertical Cone/ .0" Wall Thickn torage	/Cylinder d = 704 cf x 40.0 Cylinder Inside #1 ess = 170 cf	% Voids
Volume #1 #2 Device #1	Invert 300.00' 300.00' Routing Primary	Avail.Sto 24 17 49 17 49 49 10 49 300.00'	rage S 81 cf 1, 92 70 cf 6, 22 51 cf T 0utlet 1 8.0" R L= 10.0 Inlet / 0	- 730.1) itorage Descripti 4.00'D x 6.00'H 24 cf Overall - 2 00'D x 6.00'H \ 20 cf Overall - 5 iotal Available S Devices ound Culvert 0' CPP, project Dutlet Invert= 30 2. Corrupted I	ion Vertical Cone (20 cf Embedde /ertical Cone/(.0" Wall Thickn torage ing, no headwa 10.00' / 300.00' E - emoch info	/Cylinder d = 704 cf x 40.0 Cylinder Inside #1 less = 170 cf hll, Ke= 0.900 S= 0.0000 '/ Cr	% Voids
Volume #1 #2 Device #1	Invert 300.00' 300.00' Routing Primary	Avail.Sto 24 17 44 <u>Invert</u> 300.00'	rage S 81 cf 1: 970 cf 6: 270 cf 7: 51 cf T 0utlet 1 8.0" R L= 10.0 Inlet / 0 n= 0.01	- 730.1) torage Descripti 4.00'D x 6.00'H 24 cf Overall - 2 00'D x 6.00'H \ 20 cf Overall - 5 otal Available S Devices ound Culvert 0' CPP, project Dutlet Invert= 30 13 Corrugated F 0/r Evfiltration	ion Vertical Cone (20 cf Embedde /ertical Cone/(0 .0" Wall Thickn torage ing, no headwa 00.00' / 300.00' PE, smooth inte o over Surface	/Cylinder d = 704 cf x 40.0 Cylinder Inside #1 ess = 170 cf all, Ke= 0.900 S= 0.0000 '/' Ca area	% Voids c= 0.900 0.35 sf
Volume #1 #2 Device #1 #2	Invert 300.00' 300.00' Routing Primary Discarded	Avail.Sto 24 17 44 <u>Invert</u> 300.00' 300.00'	rage S 81 cf 1 9: 70 cf 6 2: 51 cf T Outlet I 8.0" R L= 10.0 Inlet / C n= 0.01 8.210 i Condue	- 730.1) torage Descripti 4.00'D x 6.00'H 24 cf Overall - 2 00'D x 6.00'H V 20 cf Overall - 5 otal Available S Devices ound Culvert 0' CPP, project Dutlet Invert= 30 13 Corrugated F n/hr Exfiltration	ion Vertical Cone (20 cf Embedde /ertical Cone/(0 .0" Wall Thickn torage ing, no headwa 00.00' / 300.00' PE, smooth inte n over Surface water Elevatio	/Cylinder d = 704 cf x 40.0 Cylinder Inside #1 ess = 170 cf all, Ke= 0.900 S= 0.0000 '/' Co prior, Flow Area= area n = 220.00'	% Voids c= 0.900 0.35 sf
Volume #1 #2 Device #1 #2	Invert 300.00' 300.00' Routing Primary Discarded	Avail.Sto 24 11 44 <u>Invert</u> 300.00' 300.00'	rage S 81 cf 1, 92 70 cf 6 22 51 cf T Outlet I 8.0" R L= 10.0 Inlet / C n= 0.01 8.210 i Conduce	- 730.1) torage Descripti 4.00'D x 6.00'H 24 cf Overall - 2 .00'D x 6.00'H 20 cf Overall - 5 otal Available S Devices ound Culvert 0' CPP, project Dutlet Invert= 30 13 Corrugated F n/hr Exfiltration ctivity to Ground	ion Vertical Cone (20 cf Embedde /ertical Cone/(.0" Wall Thickn torage ing, no headwa (0.00' / 300.00' PE, smooth inten n over Surface lwater Elevatio	/Cylinder ed = 704 cf x 40.0 Cylinder Inside #1 ess = 170 cf all, Ke= 0.900 S= 0.0000 '/' Co erior, Flow Area= area n = 220.00'	% Voids c= 0.900 0.35 sf
Volume #1 #2 Device #1 #2 Discard	Invert 300.00' 300.00' Routing Primary Discarded	Avail.Sto 24 11 44 <u>Invert</u> 300.00' 300.00' Max=0.03 cfr	rage S 81 cf 1: 970 cf 6 2751 cf T Outlet 1 8.0" R L= 10.0 Inlet / C n= 0.01 8.210 i Conduct s @ 12.1	- 730.1) itorage Descripti 4.00'D x 6.00'H 24 cf Overall - 2 00'D x 6.00'H \ 20 cf Overall - 5 otal Available S Devices Devices ound Culvert 0' CPP, project Dutlet Invert= 30 13 Corrugated I n/hr Exfiltration ctivity to Ground 16 hrs HW=302	ion Vertical Cone (20 cf Embedda (20 cf Embedda (20 cm/20 cm	/Cylinder d = 704 cf x 40.0 Cylinder Inside #1 ess = 170 cf all, Ke= 0.900 S = 0.0000 '/ Co erior, Flow Area= area n = 220.00' charge)	% Voids c= 0.900 0.35 sf

Analysis Prepared by {enter your company na				me here}	Type III 24-hr 100	Printed 6/22/2021
HydroCA	D® 10.00-2	6 s/n 04015 ©	2020 H	ydroCAD Softwar	re Solutions LLC	Page 21
			Sur	nmary for Po	ond 13P: IP1	
Inflow A	rea =	0.281 ac,100	0.00% Ir	npervious, Inflo	ow Depth > 5.15" for 100-	Year event
Inflow	=	2.01 cfs @	12.16 hr	rs, Volume=	0.120 af	
Discord	=	2.01 cfs @	12.16 hr	rs, Volume=	0.120 af, Atten= 0%, 1	Lag= 0.4 min
Discarde	- 05	1.03 CIS @	12.10 III 12.16 br	s, volume=	0.022 ai	
				o, Fo lanio	0.000 al	
Peak Ele	ev= 302.35	@ 12.16 hrs	Surf.A	= 5.00-20.00 hrs .rea= 154 sf _ Si	s, dt= 0.05 hrs torage= 177 cf	
Peak Ele Plug-Flo Center-c	ev= 302.35 w detention of-Mass def	12.16 hrs n time= 11.3 n t. time= 11.4 n	Surf.A Surf.A nin calci nin (740	= 5.00-20.00 hrs rea= 154 sf Si ulated for 0.120 0.9 - 729.6)	s, dt= 0.05 nrs torage= 177 cf af (100% of inflow)	
Peak Ele Plug-Flo Center-c <u>Volume</u>	ev= 302.35 w detention of-Mass det	time= 11.3 n time= 11.4 n time= 11.4 n	Surf.A Surf.A min calco min (740	= 5.00-20.00 hrs rea= 154 sf Si ulated for 0.120 0.9 - 729.6) Storage Descri	s, dt= 0.05 nrs torage= 177 cf af (100% of inflow) iption	
Peak Ele Plug-Flo Center-c <u>Volume</u> #1	w detention of-Mass det Inve 300.00	n time= 11.3 n time= 11.4 n .t <u>Avail.St</u>	Surf.A nin calco nin (740 torage 281 cf	= 5.00-20.00 hrs rea= 154 sf Si ulated for 0.120 0.9 - 729.6) <u>Storage Descri</u> 14.00'D x 6.00 924 cf Overall	s, dt= 0.05 nrs torage= 177 cf af (100% of inflow) iption 'H Vertical Cone/Cylinder - 220 cf Embedded = 704 cf	x 40.0% Voide
Peak Ele Plug-Flo Center-c <u>Volume</u> #1 #2	by Storant ev= 302.35 w detention of-Mass def Inve 300.00 300.00	(@ 12.16 hrs n time= 11.3 n time= 11.4 n rt <u>Avail.St</u>)' <u></u>	Surf.A nin calco nin (740 torage 281 cf 170 cf	= 5.00-20.00 hrs rea= 154 sf Si ulated for 0.120 0.9 - 729.6) Storage Descri 14.00'D x 6.00 924 cf Overall 6.00'D x 6.00'H	s, dt= 0.05 nrs torage= 177 cf inf (100% of inflow) iption 'H Vertical Cone/Cylinder - 220 cf Embedded = 704 cf 4 Vertical Cone/Cylinder Ins	x 40.0% Voids ide #1
Peak Ele Plug-Flo Center-c <u>Volume</u> #1 #2	vy detention of-Mass def <u>Inve</u> 300.00	(@ 12.16 hrs n time= 11.3 n time= 11.4 n rt <u>Avail.St</u>)'	Surf.A min calco min (740 torage 281 cf 170 cf	= 5.00-20.00 hrs rea= 154 sf Si ulated for 0.120 0.9 - 729.6) <u>Storage Descri</u> 14.00'D x 6.00 924 cf Overall 6.00'D x 6.00'	s, dt= 0.05 nrs torage= 177 cf inf (100% of inflow) iption 'H Vertical Cone/Cylinder - 220 cf Embedded = 704 cf 4 Vertical Cone/Cylinder Ins - 5.0" Wall Thickness = 170 cf	x 40.0% Voids ide #1 5f
Peak Ele Plug-Flo Center-c <u>Volume</u> #1 #2	by Stor-Inc ev= 302.35 w detention of-Mass def Inve 300.00 300.00	@ 12.16 hrs n time= 11.3 n . time= 11.4 n rt <u>Avail.St</u>)'	Surf.A min calco min (740 torage 281 cf 170 cf 451 cf	= 5.00-20.00 hrs rea= 154 sf Si ulated for 0.120 0.9 - 729.6) <u>Storage Descri</u> 14.00'D x 6.00 924 cf Overall 6.00'D x 6.00'l <u>220 cf Overall</u> Total Available	s, dt= 0.05 nrs torage= 177 cf af (100% of inflow) iption 'H Vertical Cone/Cylinder - 220 cf Embedded = 704 cf 4 Vertical Cone/Cylinder Ins - 5.0" Wall Thickness = 170 c Storage	x 40.0% Voids side #1
Peak Ele Plug-Flo Center-c <u>Volume</u> #1 #2 Device	ver 302.35 w detention of-Mass def <u>Inve</u> 300.00 300.00	@ 12.16 hrs n time= 11.3 r . time= 11.4 r rt <u>Avail.St</u> y'	Surf.A nin calco nin (740 torage 281 cf 170 cf 451 cf t Outle	= 5.00-20.00 hrs rea= 154 sf Si ulated for 0.120 0.9 - 729.6) <u>Storage Descri</u> 14.00'D x 6.00 924 cf Overall 6.00'D x 6.00'l <u>220 cf Overall</u> Total Available at Devices	s, dt= 0.05 nrs torage= 177 cf af (100% of inflow) iption 'H Vertical Cone/Cylinder - 220 cf Embedded = 704 cf 4 Vertical Cone/Cylinder Ins - 5.0" Wall Thickness = 170 c Storage	x 40.0% Voids ide #1 cf
Peak Ele Plug-Flo Center-c #1 #2 Device #1	ver 302.35 w detention of-Mass def 300.00 300.00 Routing Discarded	@ 12.16 hrs n time= 11.3 r . time= 11.4 r rt Avail.St y	Surf.A min calco min (740 281 cf 170 cf 451 cf t Outle ' 8.210	= 5.00-20.00 hrs rea= 154 sf Si ulated for 0.120 0.9 - 729.6) Storage Descri 14.00'D x 6.00' 924 cf Overall 6.00'D x 6.00' <u>220 cf Overall</u> Total Available <u>at Devices</u>) in/hr Exfiltrat	s, dt= 0.05 nrs torage= 177 cf af (100% of inflow) iption 'H Vertical Cone/Cylinder - 220 cf Embedded = 704 cf I Vertical Cone/Cylinder Ins - 5.0" Wall Thickness = 170 c Storage ion over Surface area	x 40.0% Voids ide #1 f
Peak Ele Plug-Flo Center-c #1 #2 Device #1	w detention of-Mass det <u>Inve</u> 300.00 <u>300.00</u> <u>Routing</u> Discarded	@ 12.16 hrs n time= 11.3 n . time= 11.4 n rt Avail.St)')')' Invert i 300.00'	Surf.A min calco min (740 281 cf 170 cf 451 cf t Outle ' 8.210 Conc	= 5.00-20.00 hrs rea= 154 sf Si ulated for 0.120 0.9 - 729.6) <u>Storage Descri</u> 14.00'D x 6.00 924 cf Overall 6.00'D x 6.00't <u>220 cf Overall</u> Total Available <u>et Devices</u> 0 in/hr Exfiltrat luctivity to Grou	s, dt= 0.05 nrs torage= 177 cf af (100% of inflow) iption 'H Vertical Cone/Cylinder - 220 cf Embedded = 704 cf Vertical Cone/Cylinder Ins - 5.0" Wall Thickness = 170 c Storage ion over Surface area indwater Elevation = 220.00'	x 40.0% Voids side #1 sf
Peak Ele Plug-Flo Center-c #1 #2 Device #1 #2	w detention of-Mass def <u>Inve</u> 300.00 <u>300.00</u> <u>Routing</u> Discarded	@ 12.16 hrs n time= 11.3 n . time= 11.4 n rt Avail.St)')' <u>Invert</u> 3 300.00' 302.00'	Surf.A nin calco nin (740 torage 281 cf 170 cf 451 cf t Outlet ' 8.210 Conc ' 2.00"	= 5.00-20.00 hrs rea= 154 sf Si ulated for 0.120 0.9 - 729.6) <u>Storage Descri</u> 14.00'D x 6.00 924 cf Overall 6.00'D x 6.00'f <u>220 cf Overall</u> Total Available <u>et Devices</u> 0 in/hr Exfiltrat luctivity to Grou x 2.0" Horiz. O	s, dt= 0.05 hrs torage= 177 cf af (100% of inflow) 'H Vertical Cone/Cylinder - 220 cf Embedded = 704 cf Vertical Cone/Cylinder Ins - 5.0'' Wall Thickness = 170 c Storage ion over Surface area indwater Elevation = 220.00' rifice/Grate X 5.00 columns - 04 cli of cl	x 40.0% Voids side #1 sf
Peak Ele Plug-Flo Center-c #1 #2 Device #1 #2	ev= 302.35 w detention of-Mass def <u>Inve</u> 300.00 300.00 <u>Routing</u> Discarded Primary	@ 12.16 hrs n time= 11.3 n . time= 11.4 n rt Avail.St y' Invert 300.00' 302.00'	Surf.A nin calco nin (740 torage 281 cf 170 cf 451 cf t Outle ' 8.210 Conc ' 2.0" : X 5 r	= 5.00-20.00 hrs rea= 154 sf Si ulated for 0.120 0.9 - 729.6) <u>Storage Descri</u> 14.00'D x 6.00 924 cf Overall 6.00'D x 6.00'I <u>220 cf Overall</u> Total Available <u>et Devices</u> 0 in/hr Exfiltrat uctivity to Grou x 2.0'' Horiz. O ows C= 0.600 in d to weir flow	s, dt= 0.05 nrs torage= 177 cf af (100% of inflow) 'H Vertical Cone/Cylinder - 220 cf Embedded = 704 cf I Vertical Cone/Cylinder Ins - 5.0" Wall Thickness = 170 c Storage ion over Surface area indwater Elevation = 220.00' rifice/Grate X 5.00 columns n 24.0" Stards	x 40.0% Voids side #1 sf pen area)

Primary OutFlow Max=1.95 cfs @ 12.16 hrs HW=302.34' (Free Discharge) -2=Orifice/Grate (Orifice Controls 1.95 cfs @ 2.81 fps)

OPERATION AND MAINTENANCE PLAN

FOR THE ENGINE YARD 40 Alpine Row (AM 279 Parcel 181) Franklin, Massachusetts

JUNE 21, 2021

Prepared By: Level Design Group, L.L.C. 249 South Street, Unit 1 Plainville, MA 02762

Prepared For: Walker Development & Construction, Inc. Attn: Mr. Jeffrey Walker 5 Mt. Royal Ave, Suite 40 Marlborough, MA 01752

> LDG Project No.: 1880.00

The proposed Stormwater Management System is designed to function properly provided that routine maintenance is performed. It is the responsibility during construction and until final development of the site and/or property and the formation of an Association to be formed that the Owner and Developer, Walker Development & Construction, Inc. (or any other future Owner/Developer), shall be responsible for the long-term maintenance to provide the required maintenance outlined in this plan for the site infiltration systems as well as the remainder of the on-site storm drainage system.

Upon completion of construction and the formation of the Association, maintenance of driveways, catch basins, and the stormwater appurtenances required to ensure that sedimentation and pollution is controlled and that storm water detention and infiltration capacity is sustained are the on-going responsibility of the Association to ensure the proper functioning of these facilities. The connection point of the site drainage system is a Town Drainage system which is currently to be maintained by the Town of Franklin to maintain flow from Alpine Row. The following maintenance practices will be used:

DRIVEWAYS & PARKING AREAS

Spring Maintenance

Driveways and Parking Areas are to be swept monthly to remove sand which has accumulated. Sand shall be removed from the site and legally disposed of.

Summer & Fall Maintenance

Leaves and debris which accumulates within the Driveways and Parking Areas during the summer and fall shall be collected and legally disposed of.

Winter Maintenance & Snow Removal

Snow removal within Driveways and Parking Area shall be stockpiled in the designated Snow Stockpile Areas outside of the traveled driveways. These areas should be located within or adjacent to the parking surface and should drain to the stormwater management system. Under no circumstances shall snow be directed onto abutting parcels or into the on-site resource areas (wetlands, wetland buffer zone, and riverfront areas).

Estimated Yearly Cost <u>\$1,000.00 (not including cost for snow plowing)</u>

GUTTERS AND DOWNSPOUTS

Summer & Fall Maintenance

Leaves and debris which accumulates within the gutters during the summer and fall shall be collected and legally disposed of. Excessive water shall not be introduced to clean the gutters and the downspouts, and materials shall be collected so as not to clog the subsurface basin.

Estimated Yearly Cost \$500.00

CATCH BASINS

Catch basins shall be inspected and cleaned four times per year or when the sumps are 50% full.

Spring Maintenance

Catch basins require the removal of sediment each spring. This procedure is comprised of removing the catch basin grate followed by removal of sediment trapped in the structure with a clamshell shovel. The outlet pipe from the catch basin shall be inspected and any obstructions are to be removed. The sediment and debris removed from the catch basin shall be legally disposed of.

Fall Maintenance

Catch basin grates shall be cleared of leaves and debris so they may function properly.

Estimated Yearly Cost <u>\$2,000.00</u>

CDS and Vort Sentry Stormwater Treatment Units

The Units should be inspected at regular intervals and maintained when necessary to ensure optimum performance. The rate at which the system collects pollutants will depend more heavily on site activities than the size of the unit, i.e., unstable soils or heavy winter sanding will cause the treatment chamber to fill more quickly, but regular sweeping will slow accumulation.

Inspection

Inspection is the key to effective maintenance and is easily performed. Pollutant deposition and transport may vary from year to year and regular inspections will help ensure that the system is cleaned out at the appropriate time. At a minimum, inspections should be performed twice per year (i.e. spring and fall) however more frequent inspections may be necessary in equipment washdown areas and in climates where winter sanding operations may lead to rapid accumulations of a large volume of sediment. It is useful and often required as part of a permit to keep a record of each inspection. A simple inspection and maintenance log form for doing so is available for download at <u>www.ContechES.com/stormwater</u>

The Units should be cleaned when the sediment has accumulated to a depth of two feet in the treatment chamber. This determination can be made by taking two measurements with a stadia rod or similar measuring device; one measurement from the manhole opening to the top of the sediment pile and the other from the manhole opening to the water surface. If the difference between these measurements is less than the distance given in Table 2, the Units should be maintained to ensure effective treatment.

Cleaning

Cleaning of the Units should be done during dry weather conditions when no flow is entering the system. Cleanout of the Units with a vacuum truck is generally the most effective and convenient method of excavating pollutants from the system. Simply remove the manhole cover and insert the vacuum hose into the sump. All pollutants can be removed from this one access point from the surface with no requirements for Confined Space Entry. In installations where the risk of petroleum spills is

small, liquid contaminants may not accumulate as quickly as sediment. However, an oil or gasoline spill should be cleaned out immediately. Motor oil and other hydrocarbons that accumulate on a more routine basis should be removed when an appreciable layer has been captured. To remove these pollutants, it may be preferable to use adsorbent pads, which solidify the oils. These are usually much easier to remove from the unit individually, and less expensive to dispose than the oil/water emulsion that may be created by vacuuming the oily layer. Floating trash can be netted out if you wish to separate it from the other pollutants. Manhole covers should be securely seated following cleaning activities to prevent leakage of runoff into the system from above and also to ensure proper safety precautions. If anyone physically enters the unit, Confined Space Entry procedures need to be followed. Disposal of all material removed from the CDS Units should be done is accordance with local regulations. In many locations, disposal of evacuated sediments may be handled in the same manner as disposal of sediments removed from catch basins or deep sump manholes. Check your local regulations for specific requirements on disposal.

SUBSURFACE INFILTRATION PIT

Once the system has gone online, inspections should occur after every storm event accumulating greater than 1 inch of rainfall for the first year to ensure proper stabilization and function. Attention should be paid to how long water remains standing in the chambers after a storm. Thereafter, the system should be inspected at least twice per year. Observations and measurements shall be made from the observation ports provided. Important items to check for include: differential settlement, cracking, erosion or leakage. If the system appears to be clogged or not functioning properly at any time, the system is to be flushed in accordance with the 10 year maintenance procedure listed below. Sediment should be removed from the system as necessary. Removal procedures should not take place until the pipes in the system are thoroughly dry. A vacuum truck is usually the most effective and convenient method. If the sediment has traveled past the reach of the vacuum truck the system shall be thoroughly flushed with water, a fire hose or the like is typically the most effective method of flushing. The manhole downstream of this process shall be plugged and sediment collected at this point.

If inspection of the inflow point indicates sediments are accumulating, removal of sediment within the basin may be required. Remove sediments from the catch basin discharge pipes which outlet into the basin. Sediment shall be flushed from the basin at least once every 10 years. Sediments should be flushed and captured on the outlet side of the basin prior to discharge. If the sediment has traveled past the reach of a vacuum truck the system shall be thoroughly flushed with water, a fire hose or the like is typically the most effective method of flushing. The manhole downstream of this process shall be plugged and sediment collected at this point. Sediment which is removed shall be legally disposed of.

The system shall be monitored at several intervals during and after a small and large rainfall event to ensure runoff is detained. Inlet and outlet pipes shall be kept free of obstructions. Any material obstructing the pipes shall be removed and legally disposed of.

Estimated Yearly Cost \$1,000.00

PUBLIC SAFETY FEATURES

Many of the Public Safety Features of the Stormwater Management System are incorporated into its design. The infiltration basins are located below the surface which provides a greater level of safety over surface basins.

Despite all the well-designed safety features within the Stormwater Management System all components of the system must be properly maintained to be effective. All maintenance procedures detailed above must be done on schedule and documented. Standing or stagnant water provides mosquito-breeding habitat and increases the potential for disease transmission. The basins are designed to fully infiltrate within 72 hours after a storm even which will prevent standing water from becoming a safety hazard. Routine monitoring for and management of mosquito-breeding conditions by qualified maintenance staff is required during the peak breading season between April and September ensure that unforeseen conditions do not develop.

While risks can be mitigated through proper design and maintenance, it is impossible to entirely eliminate risk. Therefore, education regarding stormwater management facilities and their inherent risks is valuable and should be a part of every community's activities. Employees and tenants of the adult retirement community shall be given an overview of the Stormwater System and which areas to avoid. Public participation also increases the level of maintenance as community members can notify staff if a component of the stormwater system is not functioning properly.

STORMWATER MANAGEMENT OPREATOIN AND MAINTENANCE LOG

It is the responsibility of the site operator, Property Owner and/or Association to provide the maintenance of the Stormwater Management System Maintenance in accordance with any and all permits issued by the Town of Franklin. The log form below is a template and shall be reproduced as needed. Copies of all log forms shall be kept on file for a minimum of three years from the date of inspection.

Name of Inspector:	
Date and Time of Inspection:	
Weather Conditions:	

Stormwater BMP	Observations	Action Required

249 SOUTH STREET UNIT 1 PLAINVILLE MA 02762 TEL508 695 2221 FAX508 695 2219 CONTACT@LEVELDG.COM LEVELDG.COM

Illicit Discharge Statement

249 SOUTH STREET UNIT 1 PLAINVILLE MA 02762 TEL508 695 2221 FAX508 695 2219 CONTACT@LEVELDG.COM LEVELDG.COM

Illicit Discharge Statement

For The Engine Yard 40 Alpine Row (AM 279 Parcel 181)

FRANKLIN, MASSACHUSETTS

All illicit discharges to the Stormwater Management System are prohibited. The Stormwater Management System is the system for conveying, treating, and infiltrating stormwater. Illicit discharges to Stormwater Management Systems are discharges that are not entirely comprised of stormwater, but do not include discharges from the following activities or facilities:

- Firefighting
- Water Line Flushing
- Potable Water Sources
- Landscape Irrigation
- Potable Water Sources
- Uncontaminated Groundwater
- Air-conditioning Condensation

- Dechlorinated Water from Swimming Pools
- Water used for street washing
- Water used for clean residential buildings without detergents
- Foundation Drains

The site will be operated and maintained in accordance with the Operation and Maintenance Plan dated June 21, 2021 prepared by Level Design Group, LLC.

I. *(Applicant)* do hereby agree to comply with requirements set forth within the Illicit Discharge Statement and will not knowingly discharge illicit materials to the stormwater management system once it is brought online **upon** completion of construction.

Signature:_____

Date: _____

LONG TERM POLLUTION PREVENTION PLAN

FOR THE ENGINE YARD 40 Alpine Row (AM 279 Parcel 181) Franklin, Massachusetts

JUNE 21, 2021

Prepared By: Level Design Group, L.L.C. 249 South Street, Unit 1 Plainville, MA 02762

Prepared For: Walker Development & Construction, Inc. Attn: Mr. Jeffrey Walker 5 Mt. Royal Ave, Suite 40 Marlborough, MA 01752

LDG Project No.: 1880.00

GOOD HOUSEKEEPING PRACTICES

It is the responsibility of the Owner/Developer, Walker Development & Construction, Inc. (or any other future Owner/Developer), to provide for maintenance of the parking areas and the storm drainage system until the site is turned over to the condominium association which will be created prior to the sale of any units. The responsible party shall utilize good housekeeping practices as outlined in the Operation and Maintenance Plan required for the maintenance of the Stormwater Management System.

PROVISIONS FOR STORAGE OF MATERIALS AND WASTE PRODUCTS INSIDE OR UNDER COVER

The storage of hazardous materials and waste is prohibited from being stored outdoor at the site. Any hazardous materials shall be stored under cover.

VEHICLE WASHING CONTROLS

Outdoor vehicle washing is allowed only for occupants of the condominium development for noncommercial vehicles owned by the residents of the units. No commercial vehicle washing operations is allowed in this area.

REQUIREMENTS FOR ROUTINE INSPECTION AND MAINTENANCE OF STORMWATER BMPS

The Owner / Operator shall keep a Maintenance Log Sheets of scheduled tasks outlined Operation and Maintenance Plan.

SPILL PREVENTION AND RESPONSE PLANS

The risk of significant spills requiring action at this site is limited and will most likely be associated with motor vehicle use or maintenance. In the event of a significant spill contact:

Massachusetts Department of Environmental Protection 24-hour emergency response notification line – (888) 304-1133

PROVISIONS FOR MAINTENANCE OF LAWNS, GARDENS, AND OTHER LANDSCAPED AREAS

The use of chemical fertilizers shall not be used on-site. If chemical fertilizers are required to be used, the fertilizers must be worked into the soil to prevent washouts and stormwater contamination of fertilizers.

REQUIREMENTS FOR STORAGE AND USE OF FERTILIZERS, HERBICIDES, AND PESTICIDES

If fertilizers, herbicides, and pesticides are to be used and stored on site they are to be stored in their original containers and keep in a dry, safe area where children do not have access to.

REQUIREMENTS FOR SNOW PLOWING AND STORAGE

Snow plowing within the site shall be performed by a licensed contractor. Snow is to be directed to identify snow storage areas as detailed in the Operation and Maintenance Plan. Under no circumstance shall snow be pushed into or dumped into the on-site wetland and pond areas.

PROVISIONS SOLID WASTE MANAGEMENT

Solid waste and recycling is to be disposed in designated areas in enclosed receptacles with covers and hauled by private certified waste management service operators. Solid waste management systems shall be inspected and maintained in accordance with state, local, and federal solid waste management regulations.

EMERGENCY AND REGULATORY CONTACTS

Franklin Fire Department:	911 / (508) 528-2323
Franklin Police Department:	911 / (508) 528-1212
Massachusetts Department of Environmental Protection – Southeast Regional Office:	(508) 946-2700
United State Environmental Protection Agency:	(617) 918-1111