Stormwater Management Report

Grove Street Residences
 121 Grove Street Franklin, Massachusetts

Prepared for:
Fairfield Residential Company, LLC
30 Braintree Hill Office Park, Suite 105
Braintree, Ma. 02184

Prepared by:
R.J. O'Connell \& Associates, Inc. 80 Montvale Ave, Suite 201

Stoneham, MA 02180

Date: December 18, 2023

This Page Intentionally Left Blank

Table of Contents

I. Stormwater Report Narrative

1.0 Introduction 3
2.0 Site Location and Description 3
3.0 Proposed Project 3
4.0 Compliance with MassDEP Stormwater Handbook 4
4.1 Compliance with Town of Franklin Stormwater Management Bylaw 7
5.0 Soil Data. 6
6.0 Hydrologic Methodology 6
7.0 Existing Drainage Conditions 7
7.1 On-Site Resources 7
7.2 Existing Hydrology 7
8.0 Proposed Drainage Conditions 8
8.1 Proposed Hydrology 8
8.2 Post-redevelopment Hydrological Conditions 11
8.3 Pipe Capacity Analysis 13
8.4 Rip-Rap Apron Design 13
9.0 Calculations to Support Stormwater Standards 13
9.1 Standard 3: Stormwater Recharge 13
9.2 Capture Area Adjustment. 16
9.3 Groundwater Recharge 17
9.4 Stormwater Quality 17
10.0 Summary 18

II. Figures

Figure 1 - USGS Map
Figure 2 - FEMA Flood Insurance Rate Map
Figure 3 - NRCS Web Soil Survey Map
Figure 4 - Existing Watershed Plan
Figure 5 - Proposed Watershed Plan
Figure 6 - Resource Area Map
Figure 7 - MassGIS Ortho Map

III. Appendices

Appendix A - MassDEP Checklist for Stormwater Report

Appendix B - Computations
Pre-Development Hydrological Computations
Post-Development Hydrological Computations
TSS Removal Train Calculations
Total Phosphorous Removal Calculations
Pipe Sizing Capacity Analysis
Rip-Rap Apron Design

Appendix C - Soil Evaluation by R.J. O’Connell \& Associates, Inc.
Soil Evaluation by Northeast Geotechnical, Inc.

Appendix D - Stormwater Pollution Prevention Plan (SWPPP)
To be submitted prior to construction.

Appendix E - Operation and Maintenance Plan (O\&M Plan)

I. STORMWATER REPORT NARRATIVE

This Page Intentionally Left Blank

1.0 Introduction

R.J. O'Connell \& Associates, Inc. (RJOC) has prepared this stormwater report on behalf of Fairfield Residential Company, LLC (applicant) for the proposed site improvements at 121 Grove Street located in Franklin, Massachusetts (refer to Figure 1, "USGS Map"). This study uses the computer program HydroCAD, version 10.00, to model existing and proposed hydrologic site conditions based on the Natural Resources Conservation Service (NRCS) TR-20 Computer Program for Project Formulation Hydrology. The study presents a comparative analysis of pre-development hydrologic conditions to postdevelopment hydrologic conditions and demonstrates that the proposed condition will be an improvement over the existing stormwater management condition.

2.0 Site Location and Description

The project site is comprised of two parcels of land located at 121 Grove Street and 0 Grove Street in Franklin, MA. These parcels will ultimately be consolidated into one parcel. Therefore, for the purpose of this report, the two parcels will be discussed as one "project", "site", or "property". The combined area of two parcels approximates 31.44 acres of land. The property is bounded on the north and west by Franklin State Forest, to the south by a parcel owned by New England Power with electric transformers, and east by Grove Street.

A portion of the site is developed with a three-family home and multiple shed type buildings, driveways, and walkways. The remainder of the site is undeveloped and includes open field area, woodland, and wetlands. The majority of the site is undeveloped. The residential development has two driveways onto Grove Street.

There is a significant grade change across the site from east to west. The grade change is approximately 95 feet from elevation 270 on the east side along Grove Stree to elevation 365 on the west side. There is no on-site drainage system. All stormwater runoff from the upland areas on the site sheet flow to the several on-site wetlands. Stormwater runoff from a small portion of the site, along Grove Street, sheet flows onto Grove Street and into the street drainage system.

3.0 Proposed Project

The proposed project consists of demolishing the existing structures and pavement and constructing five, multi-story, residential apartment buildings with associated parking, drive aisles, garages, and clubhouse. The redevelopment will include landscaping in the parking areas and around each building. The landscaping will be designed to provide quality, visual relief using native landscape plants.

The proposed development results in a net increase in impervious areas. The project proposes drainage systems to provide treatment of stormwater runoff as well as best management practices (BMPs) to promote infiltration to the groundwater. The stormwater design incorporates surface infiltration basins, surface detention basins, subsurface infiltration facilities, subsurface detention basins, water quality units and deep sump catchbasins. Design strategies for the proposed stormwater drainage system follows methods from the Massachusetts Stormwater Handbook as well as Franklin's Stormwater Management Bylaw to the maximum extent feasible.

4.0 Compliance with MassDEP Stormwater Handbook

This development program includes a stormwater management system that will collect, treat, and control stormwater runoff in conformance with MassDEP's Stormwater Management Policy. Stormwater Best Management Practices (BMPs) have been incorporated into the design to comply with all the Stormwater Management Standards as described below.

Standard 1 - No Untreated Discharges or Erosion to Wetlands: No new stormwater conveyances may discharge untreated stormwater directly to or cause erosion in wetlands or waters of the Commonwealth.

No new stormwater conveyances discharging untreated stormwater to wetlands or waters of the Commonwealth are proposed.

Standard 2 - Peak Rate Attenuation: Stormwater management systems shall be designed so that post-development peak discharge rates do not exceed pre-development peak discharge rates. This standard may be waived for discharges to land subject to coastal storm flowage as defined in 310 CMR 10.04.

The proposed stormwater management system results in a net decrease in peak rates of runoff discharged from the site under post-development conditions compared to pre-development rates for all storms analyzed. Refer to computations and appendices for details.

Standard 3 - Stormwater Recharge: Loss of annual recharge to groundwater shall be eliminated or minimized through the use of infiltration measures including environmentally sensitive site design, low impact development techniques, stormwater best management practices, and good operation and maintenance. At a minimum, the annual recharge from the post-development site shall approximate the annual recharge from pre-development conditions based on soil type. This standard is met when the stormwater management system is designed to infiltrate the required recharge volume as determined in accordance with the Massachusetts Stormwater Handbook.

Surface and subsurface infiltration systems have been proposed to provide the required recharge volume in areas most feasible based on groundwater elevations and boulder refusal observed in numerous test pits performed on site. Soil observations determined that the site is comprised of Hydrologic Soil Group A soils with refusal or groundwater observed in several test pits. Refer to the soil test pit logs provided for additional information and the recharge volume calculations below.

Standard 4 - Water Quality: Stormwater management systems shall be designed to remove 80% of the average annual post-construction load of Total Suspended Solids (TSS). The standard is met with pollution prevention plans, stormwater BMPs sized to capture required water quality volume, and pretreatment measures.

Runoff from surface paved areas will be collected in deep sump catch basins with hooded outlets prior to discharge to water quality units. This combination provides 80% pre-treatment prior to entering the subsurface infiltration systems or surface infiltration basins. Stormwater is infiltrated in the subsurface and surface infiltration systems. Outlet control structures (OCS) and/or piped overflow outlets regulates stormwater discharge to the design points (DP). The water quality volume is retained below the lowest outlets of the systems, providing 80% TSS removal.

Standard 5 - Land Uses with Higher Potential Pollutant Loads (LUHPPLs): Source control and pollution prevention shall be implemented in accordance with the Massachusetts Stormwater Handbook to eliminate or reduce the discharge of stormwater runoff from such land uses to the maximum extent practicable.

A Stormwater Pollution Prevention Plan (SWPPP) to control erosion, sedimentation and other pollutant sources, as well as prevent erosion and sediment from moving off-site during construction and land disturbance activities will be provided prior to construction and maintained on site.

Standard 6 - Critical Areas: Stormwater discharges to critical areas require the use of the specific source control and pollution prevention measures and specific structural stormwater best management practices determined by the Department to be suitable for managing discharges to such areas, as provided in the Massachusetts Stormwater Handbook.

Some of the stormwater discharge from the site will discharge to wetlands that flow to a Zone II. The stormwater management has been designed to treat required water quality volume of one inch over the impervious area. 80% TSS removal will be achieved prior to groundwater recharge and surface flow discharge. A long-term pollution prevention plan has been prepared and will be implemented.

Standard 7 - Redevelopment: A redevelopment project is required to meet Standards 1-6 only to the maximum extent practicable. Remaining standards shall be met and the project shall improve existing conditions.

This project is a mixture of new development and redevelopment and meets all of the stormwater management standards.

Standard 8 - Construction Period Controls: A plan to control construction-related impacts including erosion, sedimentation and other pollutant sources during construction and land disturbance activities shall be developed and implemented.

A Stormwater Pollution Prevention Plan (SWPPP) to control erosion, sedimentation and other pollutant sources, as well as prevent erosion and sediment from moving off-site during construction and land disturbance activities will be provided prior to construction and maintained on site.

Standard 9 - Long Term Maintenance: A long-term operation and maintenance plan shall be developed and implemented to ensure that stormwater management systems function as designed.

An Operation and Maintenance Plan (O\&M) to ensure the long term, post-construction operation of the stormwater management system is included in Appendix D.

Standard 10 - Prohibition of Illicit Discharges: Illicit discharges to the stormwater management system are prohibited.

Illicit discharges to the stormwater management system are discharges that are not entirely comprised of stormwater. Discharges to the stormwater management system from the following activities or facilities are permissible: Firefighting, water line flushing, landscape irrigation, uncontaminated groundwater, potable water sources, foundation drains, air conditioning condensation, footing drains, individual resident car washing, flows from riparian habitats and wetlands, dechlorinated water from swimming pools, water used for street washing and water used to clean residential buildings without detergents. All other illicit discharges are prohibited.

4.1 Compliance with Town of Franklin Stormwater Management Bylaw

Per the Town of Franklin Stormwater Management Bylaw, in addition to meeting the requirements of the Massachusetts Stormwater Standards all stormwater management systems shall meet the additional criteria as outlined in the bylaw. Stormwater Best Management Practices (BMPs) have been incorporated into the design to comply with these additional criteria, for new development sites, as described below.
a. Retain the volume of runoff equivalent to, or greater than, 1.0 inch multiplied by the total postconstruction impervious surface area on the site; and/or

- As outlined in Section 9.4, Stormwater Quality, below the stormwater management systems proposed will retain greater than required 1.0 inch multiplied by the total postconstruction impervious area.
b. Removed 90% of the average annual load of total suspended soilds (TSS) generated from the total post-construction impervious area on the site and 60% of the annual load of total phosphorous (TP) generated from the total post-construction impervious surface area on the site.
- As outlined in the computations in Appendix B, the proposed stormwater management systems will provide greater than 90% TSS average annual load removal and greater than 60\% TP removal.

5.0 Soil Data

A total of sixty-one (61) test pits have been performed on the site. In May of 2022, Northeast Geotechnical, Inc. performed nineteen (19) onsite soil tests and in October of 2023 R.J. O'Connell \& Associates, Inc (RJOC) performed forty-two (42) additional soil test pits.

The onsite soil testing performed on the soils indicated that the parent soils present belong to a Hydrologic Soil Group A in the locations of most of the test pits. Areas of shallow bedrock and high groundwater were found in some test pit locations throughout the site.

Detailed soil testing information has been provided in Appendix C from both Northeast Geotechnical, Inc (Geotechnical Consultant) and RJOC.

6.0 Hydrologic Methodology

Pre- and post-development drainage analyses were performed for the 2, 10, 25 and 100-year storm events. Rainfall events have been compiled by NOAA Atlas 14 values for extreme precipitation for the region as noted below:

County	2-year	10-year	25-year	100-year
Norfolk	3.36 in.	5.22 in.	6.39 in.	$8.12 \mathrm{in}$.

The NRCS method uses several parameters based on watershed characteristics and configuration to generate a curvilinear unit hydrograph and produce a runoff hydrograph for the watershed. Basic input
data required to generate a hydrograph are the watershed area, storm frequency, time of concentration, 24 -hour rainfall, and the watershed's runoff curve number.

NRCS Technical Release 55 (TR-55) methodology was utilized to determine weighted runoff curve number (CN) for the pre- and post-development watershed areas. Inputs for obtaining the weighted CN were determined based on ground cover type and the Hydrological Soil Group (HSG), as described in the Soil Data section above. Time of concentration (Tc) was determined based on the most hydrologically distant point (time-wise) within the watershed.

Watershed boundaries were established based on topography, storm drainage layouts, and the location of major drainage discharge points, or Design Point (DP). The pre-development watershed boundaries can be seen in Figure 4, "Existing Watershed Plan" and the post-development boundaries can be seen on Figure 5, "Proposed Watershed Plan".

7.0 Existing Drainage Conditions

7.1 On-Site Resources

Bordering vegetated wetlands exist onsite that bisect through the property, intermittent streams existing within the bordering vegetated wetlands.

The site lies within flood Zone X per FEMA FIRM Map Number 25021 Panel 0308 Suffix C, effective date July 17, 2012.

The northern corner of the site is within a Zone II, but no work is proposed within this area as part of this project, and it will remain undisturbed preserving the natural features and vegetation.

There are no endangered species habitats located within or adjacent to the site.

7.2 Existing Hydrology

The existing site has been analyzed under current extreme precipitation values for the 2 -year, 10 -year, 25 -year and 100-year 24 -hour storm events. A total of four (4) design points (DP) have been analyzed in the pre-construction conditions, consisting of existing onsite bordering vegetated wetlands, abutting property to the south and Grove Street. Design Point-1 (DP-1) has been identified as the existing wetland series A that outlets to Franklin State Forest, Design Point-2 (DP-2) has been identified as overland flow to Grove Street, Design Point-3 (DP-3) has been identified as an existing wetland series B that outlets to the existing drainage system within Grove Street, Design Point-4 (DP-4) has been identified as the abutting property to the south owned by New England Power.

Existing Sub-Catchment Area 1 (EX-1)

This sub-catchment area consists of an existing dirt path, grassed and wooded areas. Stormwater flows overland to existing wetlands series A, or DP-1, that drains to Franklin State Forest.

Existing Sub-Catchment Area 1.1 (EX-1.1)

This sub-catchment area consists of portions of existing building roof area and associated paved drive/patio areas, portions of the gravel driveway and grassed/wooded areas. Stormwater flows overland to existing wetlands series A, or DP-1, that drains to Franklin State Forest.

Existing Sub-Catchment Area 2 (EX-2)

This sub-catchment area consists of portions of existing building roof area and associated paved drive/walk areas and grassed/wooded areas. Stormwater flows overland to Grove Street or DP-2.

Existing Sub-Catchment Area 2.1 (EX-2.1)

This sub-catchment area consists of portions of existing building roof area and associated paved drive/walk areas and grassed/wooded areas. Stormwater flows overland to Grove Street or DP-2.

Existing Sub-Catchment Area 3 (EX-3)

This sub-catchment area consists of existing grassed and wooded areas. Stormwater flows overland to existing wetlands series B, or DP-3, that drains to the existing drainage system within Grove Street.

Existing Sub-Catchment Area 3.1 (EX-3.1)

This sub-catchment area consists of portions of existing roof area and grassed/wooded areas. Stormwater flows overland to existing wetlands series B, or DP-3, that drains to the existing drainage system within Grove Street.

Existing Sub-Catchment Area 3.2 (EX-3.2)

This sub-catchment area consists of existing wooded areas. Stormwater flows overland to existing wetlands series B, or DP-3, that drains to the existing drainage system within Grove Street.

Existing Sub-Catchment Area 4 (EX-4)

This sub-catchment area consists of the existing wooded areas. Stormwater flows overland to the abutting property to the south, or DP-4.

8.0 Proposed Drainage Conditions

8.1 Proposed Hydrology

The proposed project is divided into thirty-two (32) sub-catchment areas for analysis (see Figure 5 "Proposed Watershed Plan"). Stormwater runoff generated over paved areas will be captured by a deep sump catch basin with hooded outlets and routed through water quality units prior to discharge to infiltration basins, detention basins or designated design points. Stormwater runoff generated from the proposed buildings will enter the proposed drainage systems via roof drains and piping. During larger storm events, runoff will discharge from the drainage systems to outlet control structures/manifolds before discharging to the designated design points.

Proposed Sub-Catchment Area 1 (PR-1)

This sub-catchment area consists of the remainder of the existing dirt path, grassed and wooded areas. Stormwater runoff from this sub-catchment will flow overland to DP-1.

Proposed Sub-Catchment Area 1.1 (PR-1.1)

This sub-catchment area consists of grassed and wooded areas. Stormwater runoff from this subcatchment will flow overland to DP-1.

Proposed Sub-Catchment Area 1.2 (PR-1.2)

This sub-catchment area consists of grassed and wooded areas. Stormwater runoff from this subcatchment will flow overland to DP-1.

Proposed Sub-Catchment Area 1.3 (PR-1.3)

This sub-catchment area consists of grassed and wooded areas. Stormwater runoff from this subcatchment will flow overland to DP-1.

Proposed Sub-Catchment Area 1.4 (PR-1.4)

This sub-catchment area consists of proposed driveway area and grassed areas. Stormwater runoff from this sub-catchment will be collected via deep sump catchbasins or a trench drain and directed to a water quality unit prior to discharging to proposed subsurface infiltration system-8 (PSIS-8) and ultimately to DP-1 via a piped manifold overflow in larger storm events.

Proposed Sub-Catchment Area 1.5 (PR-1.5)

This sub-catchment area consists of proposed driveway/parking area, roof area and grassed areas. Stormwater runoff from the ground area of this sub-catchment will be collected via deep sump catchbasins and directed to a water quality unit prior to discharging to proposed subsurface infiltration system-3 (PSIS-3) while the roof area will be directly piped to PSIS-3. PSIS-3 has been designed with a piped manifold overflow that will direct stormwater to DP-1 in larger storm events.

Proposed Sub-Catchment Area 1.6 (PR-1.6)

This sub-catchment area consists of proposed driveway/parking area and grassed areas. Stormwater runoff from this sub-catchment will be collected via deep sump catchbasins and directed to a water quality unit prior to discharging to proposed subsurface infiltration system-6 (PSIS-6). PSIS-6 has been designed with a piped manifold overflow that will direct stormwater to Stormwater Basin-3 that ultimately overflow to DP-1 in larger storm events.

Proposed Sub-Catchment Area 1.6A (PR-1.6A)

This sub-catchment area consists of grassed areas. Stormwater runoff from this sub-catchment will be collected via overland flow in Stormwater Basin-3 (SWB-3). SWB-3 has been designed with a weir that ultimately overflow to DP-1 in larger storm events.

Proposed Sub-Catchment Area 1.7 (PR-1.7)

This sub-catchment area consists of proposed driveway area and grassed areas. Stormwater runoff from this sub-catchment will be collected via deep sump catchbasins and directed to a water quality unit prior to discharging to proposed subsurface infiltration system-3 (PSIS-3). PSIS-3 has been designed with a piped manifold overflow that will direct stormwater to DP-1 in larger storm events

Proposed Sub-Catchment Area 1.8 (PR-1.8)

This sub-catchment area consists of the amenity area off the rear of the clubhouse, that includes walkways, pool patio areas and grasses areas. Stormwater runoff from this sub-catchment will be collected via area drains and directed to proposed subsurface infiltration system-7 (PSIS-7). PSIS-7 has been designed with a piped manifold overflow that will direct stormwater to DP-1 in larger storm events.

Proposed Sub-Catchment Area 1.9 (PR-1.9)

This sub-catchment area consists of proposed driveway/parking area and grassed areas. Stormwater runoff from this sub-catchment will be collected via deep sump catchbasins and directed to a water quality unit prior to discharging to proposed subsurface infiltration system-3 (PSIS-3). PSIS-3 has been designed with a piped manifold overflow that will direct stormwater to DP-1 in larger storm events.

This sub-catchment area consists of proposed driveway/parking area and grassed areas. Stormwater runoff from this sub-catchment will be collected via deep sump catchbasins and directed to a water quality unit prior to discharging to proposed subsurface infiltration system-3 (PSIS-3). PSIS-3 has been designed with a piped manifold overflow that will direct stormwater to DP-1 in larger storm events.

Proposed Sub-Catchment Area 1.11 (PR-1.11)

This sub-catchment area consists of proposed driveway/parking area and grassed areas. Stormwater runoff from this sub-catchment will be collected via deep sump catchbasins and directed to a water quality unit prior to discharging to proposed subsurface detention system-2 (PSDS-2). PSDS-2 has been designed with a piped manifold overflow that will direct stormwater to proposed stormwater basin-2 (SWB-2) that has been designed with a weir that overflows to DP-1 in larger storm events.

Proposed Sub-Catchment Area 1.12 (PR-1.12)

This sub-catchment area consists of proposed roof area. Stormwater runoff from this sub-catchment will be collected via roof drains and directed to proposed subsurface infiltration system-2 (PSIS-2). PSIS-2 has been designed with a piped manifold overflow that will direct stormwater to proposed stormwater basin-2 (SWB-2) that has been designed with a weir that overflows to DP-1 in larger storm events.

Proposed Sub-Catchment Area 1.13 (PR-1.13)

This sub-catchment area consists of proposed driveway/parking area, roof area and grassed areas. Stormwater runoff from the ground area of this sub-catchment will be collected via deep sump catchbasins and directed to a water quality unit prior to discharging to proposed subsurface infiltration system-4 (PSIS-4) while the roof area will be directly piped to PSIS-4. PSIS-4 has been designed with a piped manifold overflow that will direct stormwater to DP-1 in larger storm events.

Proposed Sub-Catchment Area 1.14 (PR-1.14)

This sub-catchment area consists of proposed driveway/parking area and grassed/wooded areas. Stormwater runoff from this sub-catchment will be collected via deep sump catchbasins and directed to a water quality unit prior to discharging to proposed subsurface infiltration system-5 (PSIS-5). PSIS-5 has been designed with a piped manifold overflow that will direct stormwater to DP-1 in larger storm events.

Proposed Sub-Catchment Area 1.14A (PR-1.14A)

This sub-catchment area consists of proposed driveway/parking area, roof area and grassed areas. Stormwater runoff from the ground area of this sub-catchment will be collected via deep sump catchbasins and directed to a water quality unit prior to discharging to proposed subsurface detention system-3 (PSDS-3) while the roof area will be directly piped to PSDS-3. PSDS-3 has been designed with a piped manifold overflow that will direct stormwater to DP-1 in larger storm events.

Proposed Sub-Catchment Area 2 (PR-2)

This sub-catchment area consists of portions of proposed driveway entrance and grassed areas. Stormwater flows overland to Grove Street or DP-2.

Proposed Sub-Catchment Area 2.1 (PR-2.1)

This sub-catchment area consists of grassed/wooded areas. Stormwater flows overland to Grove Street or DP-2.

This sub-catchment area consists of a proposed transformer pad and grassed/wooded areas.
Stormwater flows overland to existing wetlands series B, or DP-3, that drains to the existing drainage system within Grove Street.

Proposed Sub-Catchment Area 3.1 (PR-3.1)

This sub-catchment area consists of grassed and wooded areas. Stormwater flows overland to existing wetlands series B, or DP-3, that drains to the existing drainage system within Grove Street.

Proposed Sub-Catchment Area 3.2 (PR-3.2)

This sub-catchment area consists of wooded areas. Stormwater flows overland to existing wetlands series B, or DP-3, that drains to the existing drainage system within Grove Street.

Proposed Sub-Catchment Area 3.3 (PR-3.3)

This sub-catchment area consists of grassed areas. Stormwater flows overland to existing wetlands series B, or DP-3, that drains to the existing drainage system within Grove Street.

Proposed Sub-Catchment Area 3.4 (PR-3.4)

This sub-catchment area consists of grassed areas. Stormwater flows overland to existing wetlands series B, or DP-3, that drains to the existing drainage system within Grove Street.

Proposed Sub-Catchment Area 3.5 (PR-3.5)

This sub-catchment area consists of proposed driveway/parking area and grassed areas. Stormwater runoff from this sub-catchment will be collected via deep sump catchbasins and directed to a water quality unit prior to discharging to proposed subsurface detention system-1 (PSDS-1). PSDS-1 has been designed with a piped manifold overflow that will direct stormwater to stormwater basin-1 (SWB-1) that has a weir that outlets stormwater to DP-3 in larger storm events.

Proposed Sub-Catchment Area 3.5A (PR-3.5A)

This sub-catchment area consists of grassed areas. Stormwater runoff from this sub-catchment will overland flow to stormwater basin-1 (SWB-1) that has a weir that outlets stormwater to DP-3 in larger storm events.

Proposed Sub-Catchment Area 3.6 (PR-3.6)

This sub-catchment area consists of proposed roof area. Stormwater runoff from this sub-catchment will be collected via roof drains and directed to proposed subsurface infiltration system-1 (PSIS-1). PSIS-1 has been designed with a piped manifold overflow that will direct stormwater to proposed stormwater basin-1 (SWB-1) that has been designed with a weir that overflows to DP-3 in larger storm events.

Proposed Sub-Catchment Area 4 (PR-4)

This sub-catchment area consists of wooded areas. Stormwater flows overland to the abutting property to the south, or DP-4.

8.2 Post-development Hydrological Conditions

Under proposed conditions, deep-sump catch basins with hooded outlets, water quality units, subsurface infiltration systems and surface infiltration basins will treat and infiltrate stormwater runoff. Surface and subsurface detention basins have been incorporated to mitigate peak rates of discharge. During larger storm events, stormwater runoff from the surface and subsurface systems will overflow and discharge to the aforementioned design points (DP). Below is a comparison summary table of the pre- and post-development peak rates of runoff at the Design Points. The peak rates of stormwater
discharged from the site for the storm events analyzed will be reduced under proposed conditions as compared to existing conditions.

Detailed HydroCAD analysis of the existing and proposed sub-catchment areas, ponds and reaches is included in the Hydrologic Calculations appendix of this report. The following are summary charts for each design point of the existing and proposed peak rates and volumes:

Design Point \#1

Storm Frequency	Existing Flow Rate (cfs)	Proposed Flow Rate (cfs)	Existing Volume (cf)	Proposed Volume (cf)
2-Year	3.7	2.6	24,697	16,831
10-Year	18.2	10.1	78,965	59,638
25-Year	30.1	21.3	122,155	97,154
100-Year	50.6	48.7	197,073	171,174

Design Point \#2

Storm Frequency	Existing Flow Rate (cfs)	Proposed Flow Rate (cfs)	Existing Volume (cf)	Proposed Volume (cf)
2-Year	0.0	0.0	252	138
$\mathbf{1 0 - Y e a r ~}$	0.3	0.1	1,609	710
$\mathbf{2 5 - Y e a r ~}$	0.7	0.3	3,119	1,431
$\mathbf{1 0 0 - Y e a r ~}$	1.5	0.6	6,313	2,969

Design Point \#3

Storm Frequency	Existing Flow Rate (cfs)	Proposed Flow Rate (cfs)	Existing Volume (cf)	Proposed Volume (cf)
2-Year	0.0	0.0	0	5
10-Year	0.0	0.0	1,303	851
25-Year	0.2	0.2	5,068	2,624
100-Year	1.7	0.9	14,908	7,090

Storm Frequency	Existing Flow Rate (cfs)	Proposed Flow Rate (cfs)	Existing Volume (cf)	Proposed Volume (cf)
2-Year	0.0	0.0	0	0
10-Year	0.0	0.0	27	14
25-Year	0.0	0.0	251	134
100-Year	0.1	0.0	978	521

8.3 Pipe Capacity Analysis

Pipe capacity calculations have been performed for the proposed inlet structures for the 50-year storm event.

8.4 Rip-Rap Apron Design

Rip-rap apron design calculations have been performed for the proposed flared end outlets for the 50year storm event.

9.0 Calculations to support specific Stormwater Standards

9.1 Standard 3: Stormwater Recharge

Sixty-one (61) Test pits have been performed on site. Based on a review of the test pit logs the areas of the proposed stormwater basins/systems are comprised of soils belonging to Hydrologic Soil Group A. The parent material was observed to mostly be loamy sand or sand over ledge.

The required recharge volume has been calculated below for review with drawdown times. Refer to Appendix A for additional information.

Utilizing the current regulations, the required recharge volume (Rv) is based on the following calculation:
$R v=F x$
Rv = Required Recharge Volume
F = Target Depth Factor associated with hydrologic soil groups located in table 2.3.2 in Volume 3 of the Stormwater Management Handbook
$x=$ total onsite impervious area
F =

NRCS HYDROLOGIC SOIL TYPE	APPROX. SOIL TEXTURE	TARGET DEPTH FACTOR (F)
A	sand	$\mathbf{0 . 6 - i n c h ~}$
B	loam	$\mathbf{0 . 3 5 - i n c h ~}$
C	silty loam	$\mathbf{0 . 2 5}$-inch
D	clay	$\mathbf{0 . 1}$-inch

Hydrologic Soil Group A:

- $x=261,393 \mathrm{sf}$
- $\operatorname{Rv}=(1 / 12)(0.6)(261,393)=13,070 c f$

Hydrologic Soil Group B:

- $x=146,768 \mathrm{sf}$
- $R v=(1 / 12)(0.35)(146,768)=4,281 \mathrm{cf}$

Hydrologic Soil Group D:

- $x=19,840 \mathrm{sf}$
- $\operatorname{Rv}=(1 / 12)(0.10)(19,840)=165 c f$

Total Rv = 17,516 cf

Volume of storage provided under the outlets of the proposed infiltration basins for recharge:

```
PSIS-1 = 1,613 cf
PSIS-2 = 1,674 cf
PSIS-3 = 17,053 cf
PSIS-4 = 34,610 cf
PSIS-5 = 9,707 cf
PSIS-6 = 9,257 cf
PSIS-7 = 2,139 cf
PSIS-8 = 2,984 cf
SWB-1 = 12,681 cf
```


Total Recharge Storage Provided $=91,718$ cf

The Stormwater Handbook also requires recharge facilities be installed in soils capable of absorbing the recharge volume with the ability to drain within 72 hours. The formula for drawdown is as follows:

General Formula:

$\mathrm{T}_{\mathrm{DR}}=\frac{\text { requiredstoragevolume }{ }^{*}}{(\text { RawlsRate })(\text { BottomSurfaceAreaofSystem })}$
(*Required storage volume is equal to the larger of the calculated required recharge or treatment volumes In this case, treatment volume is greater as indicated in Standard 4).

PSIS-1:

$$
\begin{aligned}
& \text { Volume to Treat }=1,613 c f \\
& \mathrm{~T}_{\mathrm{DR}}=\frac{\mathbf{1 , 6 1 3} \boldsymbol{c f}}{\left(\frac{8.27 \mathrm{in} / \mathrm{hr}}{12 \mathrm{in} / f t}\right)(\mathbf{1}, \mathbf{2 2 4 s} f)}=1.9 \mathrm{hrs}
\end{aligned}
$$

PSIS-2:

Volume to Treat $=1,674 c f$
$T_{D R}=\frac{1,674 c f}{\left(\frac{2.41 \text { in } / \text { hr } r}{12 i n / f t}\right)(2,128 s f)}=3.9 \mathrm{hrs}$
3.9hrs < 72 hrs

PSIS-3:

Volume to Treat $=17,053 c f$
$T_{D R}=\frac{17,053 c f}{\left(\frac{8.27 i n / h r}{12 i n / f t}\right)(5,421 s f)}=4.6 \mathrm{hrs}$
4.6hrs < $72 h r s$

PSIS-4:

Volume to Treat $=34,610 c f$
$T_{D R}=\frac{34,610 c f}{\left(\frac{2.41 \mathrm{in} / \mathrm{hr}}{12 \mathrm{in} / \mathrm{ft}}\right)(4,560 \mathrm{~s} f)}=37.8 \mathrm{hrs}$
$37.8 h r s<72 h r s$
PSIS-5:

Volume to Treat $=9,707 c f$
$T_{D R}=\frac{9,707 \boldsymbol{c f}}{\left(\frac{2.41 i n / h r}{12 i n / f t}\right)(4,320 \boldsymbol{s f})}=11.2 \mathrm{hrs}$
11.2hrs < 72 hrs

PSIS-6:

Volume to Treat $=9,257 c f$
$T_{D R}=\frac{9,257 \boldsymbol{c f}}{\left(\frac{8.27 n / \boldsymbol{h r}}{12 \mathrm{in} / \mathrm{ft}}\right)(2, \mathbf{2 9 0} \boldsymbol{f} \boldsymbol{f})}=5.9 \mathrm{hrs}$
5.9hrs < 72hrs

PSIS-7:

Volume to Treat $=2,139 c f$
$T_{D R}=\frac{2,139 c f}{\left(\frac{2.41 \text { in } / h r}{12 i n / f t}\right)(1,616 s f)}=6.6 \mathrm{hrs}$

PSIS-8:

Volume to Treat $=2,984 c f$
$T_{D R}=\frac{2,984 c f}{\left(\frac{8.27 i n / h r}{12 i n / f t}\right)(1,108 s f)}=3.9 \mathrm{hrs}$
3.9hrs < 72 hrs

SWB-1:

Volume to Treat $=12,681 c f$

$$
\mathrm{T}_{\mathrm{DR}}=\frac{12,681 c f}{\left(\frac{8.27 i n / h r}{12 i n / f t}\right)(2,700 s f)}=6.8 \mathrm{hrs}
$$

$6.8 \mathrm{hrs}<72 \mathrm{hrs}$

9.2 Capture Area Adjustment

A portion of the total onsite impervious area is not directed into one of the proposed infiltration facilities. In accordance with the Stormwater Handbook, a capture area adjustment calculation is required when runoff from only a portion of the impervious area on a site is directed to one or more infiltration BMPs. The following are steps of the capture area adjustment calculation to demonstrate the required minimum of 65% of the impervious area onsite is being directed to an infiltration BMP. The calculation also determines the increase in storage capacity of the infiltration BMPs to ensure they are able to capture sufficient runoff from the impervious surfaces within the contributing drainage area to infiltrate the required recharge volume.

1. Calculate Rv for the project:

From above $\mathrm{Rv}=17,516 \mathrm{cf}$
2. Calculate the impervious area draining to recharge facilities:

Area $=404,779 \mathrm{sf}$
3. Divide site total site impervious by the impervious area draining to recharge facilities:

Total site impervious area $=428,001 \mathrm{sf}$
$428,001 / 404,779=1.06$
4. Multiply quotient from step 3 by the original Rv to determine the adjusted minimum storage volume needed to meet the recharge requirement:
$1.06 \times 17,516=18,567 \mathrm{cf}$ Infiltration facilities provide 91,718 cf of storage
5. Ensure minimum of 65% of the site impervious area is being directed to the infiltration facilities:
404.779sf/428,001sf = 94.6\%

In summary, the infiltration facilities onsite provide a total recharge storage volume of 91,718 cf which is greater than the adjusted minimum storage volume calculated by the capture area adjustment. The project also directs a minimum 65% of the impervious area into the recharge facility which will provide sufficient runoff to infiltrate the required recharge volume. This ensures the post development annual recharge rate will approximate the annual rate from pre development conditions.

9.3 Groundwater Recharge

The required recharge volume has been calculated below for review with drawdown times illustrated above. Refer to Appendix A for additional information.

9.4 Stormwater Quality

The proposal utilizes low impact strategies as well as conventional stormwater management techniques for treatment and recharge of stormwater. Design strategies for the stormwater systems follow methods from the MA Stormwater Handbook.

Catchbasins with Deep Sumps and Hooded Outlets

Catchbasins trap and remove sediments and larger particles from stormwater runoff and improve the performance of subsequent BMP's. These basins will be fitted with an outlet hood to separate floatables such as oil, grease, trash and debris. The catchbasin sumps will be a minimum of 4 feet in depth to promote settling of suspended solids. A TSS removal rate of 25% is achieved by this BMP.

Contech CDS Water Quality Unit

The Contech CDS is a continuous deflective separation technology which screens, separates and traps debris, sediment, oil and grease from stormwater runoff. Stormwater enters the diversion chamber where the diversion weir guides the flow into the unit's separation chamber. Swirl concentration and screen deflection force floatables and solids to the center of the separation chamber where floatables and neutrally buoyant debris larger than screen apertures are trapped. Stormwater then moves through the separation screen, under the oil baffle and exits the system. The separation screen remains clog free due to continuous deflection.

This BMP achieves a TSS Removal Rate of 80% based on required proprietary structure sizing calculations issued by MA DEP effective on October 15, 2013.

Subsurface Infiltration Facility

Subsurface infiltration facilities have been incorporated into this design to provide recharge of stormwater from impervious surfaces. Each facility consists of plastic chambers with open bottoms placed atop a stone bed. Chambers are constructed to store stormwater temporarily and let it infiltrate into the underlying soil. The facilities have been designed to recharge stormwater from the proposed roofs as well as a portion of the new paved roadway. A TSS removal rate of 80% is achieved by this BMP.

Surface Infiltration Basin

A surface infiltration basin is a stormwater runoff impoundment constructed over permeable soils which can provide storage and exfiltration of the required recharge volume. Mitigation of stormwater peak flows as well as treatment of the required water quality volume is also provided. The basin is comprised of a flat bottom and side slopes stabilized with a dense turf of water tolerant grass capable of surviving in both wet and dry conditions. This BMP achieves a TSS removal rate of 80%.

For additional information on TSS removal rates please see attachments in appendix.

Water Quality Volume:

$$
V_{W Q}=D_{W Q} * A_{\text {impervious }}
$$

Where:
$\mathrm{D}_{\mathrm{wQ}}=$ Water Quality Depth $=1$-inch
$A_{\text {impervious }}=$ Impervious area $=428,001 \mathrm{sf}$

$$
V_{W Q}=1.0 \text { in } *\left(\frac{1 f t}{12 \text { in }}\right) * 428,001 s f=35,667 \boldsymbol{C F}
$$

Water Quality Volume Provided:

Volume of storage provided under the outlets of the proposed infiltration basins for recharge:

PSIS-1 = 1,613 cf
PSIS-2 = 1,674 cf
PSIS-3 = 17,053 cf
PSIS-4 $=34,610 \mathrm{cf}$
PSIS-5 $=9,707$ cf
PSIS-6 = 9,257 cf
PSIS-7 $=2,139 \mathrm{cf}$
PSIS-8 = 2,984 cf
SWB-1 = 12,681 cf

Total Recharge Storage Provided $=91,718$ cf

10.0 Summary

This hydrologic analysis estimates peak storm runoff discharged from the site under both the existing and proposed conditions. The stormwater management system for the proposed development includes measures for collecting, controlling, and treating stormwater runoff from the site. The proposed measures comply with the Stormwater Management Standards of the MassDEP Stormwater Policy and represent an improvement over the existing conditions. The drainage improvements proposed herein will reduce stormwater runoff peak flow rates leaving the site and improve the overall water quality of stormwater runoff.

An Operation and Maintenance Manual has been included as part of this report to ensure the long-term operation of the proposed stormwater management system. As part of the proposed Operation and Maintenance Manual, a Long-Term Pollution Prevention Plan (LTPPP) has been incorporated to ensure proper spill prevention and management materials area available on site and staff are properly trained to prevent additional pollutant loading.

II. FIGURES

This Page Intentionally Left Blank

GRAPHIC SCALE IN FEET

REFERENCE: FEMA FLOOD INSURANCE RATE MAP, MIDDLESEX COUNTY MAP NUMBER 25027C0662F EFFECTIVE DATE JULY 16, 2014

RJO'CONNELL
\& ASSOCIATES, INC
CIVIL ENGINEERS, SURVEYORS \& LAND PLANNERS
DATE: $12 / 18 / 2023 \quad$ SCALE: $1^{1 "=250}$
FIGURE 2
FEMA FLOOD INSURANCE RATE MAP

121 GROVE STREET
FRANKLIN, MA 02038

GRAPHIC SCALE IN FEET

NRCS SOIL MAP LEGEND		
MAP UNIT SYMBOL	MAP UNIT NAME	HSG
71B	RIDGEBURY FINE SANDY LOAM, 3 TO 8\% SLOPES, EXTREMELY STONY	D
103B	CHARLTON-HOLLIS-ROCK OUTCROP COMPLEX, 3 TO 8\% SLOPES	A
103C	CHARLTON-HOLLIS-ROCK OUTCROP COMPLEX, 0 TO 15\% SLOPES	B
254B	HINCKLEY LOMAY SAND, 3 TO 8\% SLOPES	A

RJO'CONNELL $\underset{\text { civil encineers, surveyors \& LAND PLANNER }}{\text { R ASS }}$
civil engineers, surveyors \& Land planners
DATE: $12 / 18 / 2023 \quad$ SCALE: $1 "=300$ FIGURE 3
NRCS WEB SOIL SURVEY MAP 121 GROVE STREET

${ }^{\text {WPAs }}$

DEP Wellands Detalled min outlines
DEP Welliands Detalled win O
园 Barrier Beach－Deep Marsh
Barrier Beach－Wooded Swamp Mixed
B Barrier Beach－Coastal Beach
Barrier Beach－Coastal Dune \square Barrier Beach－Marsh
Barrier Beach－Salt Marsh
\square Barrier Beach－Wooded Swamp Conife
Barrier Beach－wooded swamp Decid
（1）Bog
Coastal Bank El
\square Coastal Dune
\square Cranberry Bog
\square Deep Marsh
Barrier Beach－Open water
\square open Water
Rocky Intertidal shore
Sall Marsh
Shallow Marsh Meadow or Fen因 Shrub Swamp Tidal Flat
国 wooded Swamp Coniferous Wooded 5 wamp Deciduous ［ Wooded Swamp Mixed Trees NHESP Priority Habilats of Rare Species

NHESP Estimated Habilats of Rare Wildifie
Potential Verral Pools
${ }^{\text {NHESP Certilied Vemal Pools }}$

III.APPENDICIES

APPENDIX A

MassDEP Checklist for Stormwater Reports

This Page Intentionally Left Blank

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals. ${ }^{1}$ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8^{2}
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

[^0]Massachusetts Department of Environmental Protection
Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Longterm Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?New developmentRedevelopmentMix of New Development and Redevelopment

Checklist for Stormwater Report

Checklist (continued)

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:
\square No disturbance to any Wetland Resource Areas
\square Site Design Practices (e.g. clustered development, reduced frontage setbacks)
\square Reduced Impervious Area (Redevelopment Only)
\square Minimizing disturbance to existing trees and shrubs
\square LID Site Design Credit Requested:
Credit 1
\square Credit 2
\square Credit 3Use of "country drainage" versus curb and gutter conveyance and pipeBioretention Cells (includes Rain Gardens)Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
Treebox FilterWater Quality SwaleGrass ChannelGreen Roof
\square Other (describe):

Standard 1: No New Untreated Discharges

\boxtimes No new untreated discharges
\boxtimes Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
\square Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Checklist for Stormwater Report

Checklist (continued)

Standard 2: Peak Rate Attenuation

Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
\square Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.
\boxtimes Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

\boxtimes Soil Analysis provided.
\boxtimes Required Recharge Volume calculation provided.
\square Required Recharge volume reduced through use of the LID site Design Credits.
\boxtimes Sizing the infiltration, BMPs is based on the following method: Check the method used.
【 StaticSimple DynamicDynamic Field ${ }^{1}$

Runoff from all impervious areas at the site discharging to the infiltration BMP.
\boxtimes Runoff from all impervious areas at the site is not discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.

Q Recharge BMPs have been sized to infiltrate the Required Recharge Volume.
Recharge BMPs have been sized to infiltrate the Required Recharge Volume only to the maximum extent practicable for the following reason:
\square Site is comprised solely of C and D soils and/or bedrock at the land surface
\square M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
\square Solid Waste Landfill pursuant to 310 CMR 19.000
\square Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
\boxtimes Calculations showing that the infiltration BMPs will drain in 72 hours are provided.
\square Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

[^1]
Checklist for Stormwater Report

Checklist (continued)

Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10 year 24 -hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
\boxtimes A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
\boxtimes Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
\boxtimes is within the Zone II or Interim Wellhead Protection Area
\square is near or to other critical areas
\square is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
\square involves runoff from land uses with higher potential pollutant loads.
The Required Water Quality Volume is reduced through use of the LID site Design Credits.
\boxtimes Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Checklist for Stormwater Report

Checklist (continued)

Standard 4: Water Quality (continued)

The BMP is sized (and calculations provided) based on:
【 The $1 / 2$ " or 1" Water Quality Volume or
\square The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
\boxtimes The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
\square A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.

Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)

\square The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report.
\square The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted prior to the discharge of stormwater to the post-construction stormwater BMPs.
\boxtimes The NPDES Multi-Sector General Permit does not cover the land use.
\square LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
\square All exposure has been eliminated.
\square All exposure has not been eliminated and all BMPs selected are on MassDEP LUHPPL list.
\square The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.

Standard 6: Critical Areas

The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
\square Critical areas and BMPs are identified in the Stormwater Report.

Checklist for Stormwater Report

Checklist (continued)

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:
\square Limited Project
\square Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.
\square Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area
\square Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
\square Bike Path and/or Foot PathRedevelopment Project
\square Redevelopment portion of mix of new and redevelopment.
Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.
\square The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Checklist for Stormwater Report

Checklist (continued)

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has not been included in the Stormwater Report but will be submitted before land disturbance begins.
\square The project is not covered by a NPDES Construction General Permit.
\square The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
\boxtimes The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

\boxtimes The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
\boxtimes Name of the stormwater management system owners;
\boxtimes Party responsible for operation and maintenance;
\boxtimes Schedule for implementation of routine and non-routine maintenance tasks;
\boxtimes Plan showing the location of all stormwater BMPs maintenance access areas;
\boxtimes Description and delineation of public safety features;
\square Estimated operation and maintenance budget; and
Q Operation and Maintenance Log Form.
The responsible party is not the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
\square A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
\square A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

Standard 10: Prohibition of Illicit Discharges

The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
【 An Illicit Discharge Compliance Statement is attached;
\square
NO Illicit Discharge Compliance Statement is attached but will be submitted prior to the discharge of any stormwater to post-construction BMPs.

APPENDIX B

Computations

This Page Intentionally Left Blank

Pre-Development Hydrological Computations

This Page Intentionally Left Blank

231 Grove Street

Area Listing (all nodes)

Area $(\mathrm{sq}$-ft)	CN	Description (subcatchment-numbers)
147,122	39	$>75 \%$ Grass cover, Good, HSG A (EX-1.1, EX-2, EX-2.1, EX-3, EX-3.1)
43,817	61	$>75 \%$ Grass cover, Good, HSG B (EX-1)
52,807	80	$>75 \%$ Grass cover, Good, HSG D (EX-1, EX-1.1, EX-2)
7,032	72	Dirt Path (EX-1)
7,912	98	Drive/Patios (EX-1.1)
6,805	96	Gravel surface, HSG A (EX-1.1)
6,807	98	Roof Area (EX-1.1, EX-2, EX-3.1)
1,289	98	Walk/Driveway (EX-2)
320,012	30	Woods, Good, HSG A (EX-1.1, EX-2, EX-2.1, EX-3, EX-3.1, EX-3.2, EX-4)
369,499	55	Woods, Good, HSG B (EX-1)
111,526	77	Woods, Good, HSG D (EX-1, EX-1.1)
$\mathbf{1 , 0 7 4 , 6 2 8}$	$\mathbf{5 0}$	TOTAL AREA

Summary for Subcatchment EX-1: northern locus

Runoff = 2.7 cfs @ 12.26 hrs, Volume= 17,484 cf, Depth> 0.43"

Routed to Reach DP-1 : Ex. Wetlands (series A)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

12.5593 Total

Summary for Subcatchment EX-1.1: central northern locus

Runoff = $1.1 \mathrm{cfs} @ 12.16$ hrs, Volume= \quad 7,213 cf, Depth> 0.36"
Routed to Reach DP-1 : Ex. Wetlands (series A)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

Summary for Subcatchment EX-2: northeastern locus

Runoff $=0.0$ cfs @ 13.78 hrs , Volume= 252 cf , Depth> 0.10" Routed to Reach DP-2 : Grove Street

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

Summary for Subcatchment EX-2.1: southeast corner locus
Runoff $=0.0$ cfs @ 0.00 hrs, Volume= 0 cf, Depth= $0.00{ }^{\prime \prime}$
Routed to Reach DP-2 : Grove Street
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

Summary for Subcatchment EX-3: southern locus

Runoff $=0.0 \mathrm{cfs}$ @ 0.00 hrs , Volume= 0 cf, Depth= $0.00{ }^{\prime \prime}$
Routed to Reach DP-3 : Ex. Wetlands (series B)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

[^2]
Summary for Subcatchment EX-3.1: central southern locus

Runoff $=0.0$ cfs @ 0.00 hrs , Volume=
0 cf, Depth= 0.00 "
Routed to Reach DP-3 : Ex. Wetlands (series B)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

Summary for Subcatchment EX-3.2: south western locus

Runoff = 0.0 cfs @ 0.00 hrs , Volume= 0 cf, Depth= 0.00
Routed to Reach DP-3 : Ex. Wetlands (series B)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

Summary for Subcatchment EX-4: southwest corner locus

Runoff =
$=0.0 \mathrm{cfs} @ 0.00 \mathrm{hrs}$, Volume=
0 cf, Depth= 0.00 "
Routed to Reach DP-4 : 231 Grove Street

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

8.4111 Total

Summary for Reach DP-1: Ex. Wetlands (series A)

Inflow Area $=$	$722,454 \mathrm{sf}, \quad 1.61 \%$	Impervious,	Inflow Depth $>0.41 "$	for $2-\mathrm{Yr} 24 \mathrm{Hr}$ event
Inflow	$=$	$3.7 \mathrm{cfs} @ 12.26 \mathrm{hrs}$, Volume=	$24,697 \mathrm{cf}$	
Outflow	$=$	$3.7 \mathrm{cfs} @ 12.26 \mathrm{hrs}$, Volume $=$	$24,697 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Reach DP-2: Grove Street

Inflow Area	59,29	us,	Inflow Depth >	0.05"
Inflow	0.0 cfs @	13.78 hrs , Volume=	252 cf	
Outflow	0.0 cfs @	13.78 hrs, Volume=	252 cf,	Atten $=0 \%$ Lag $=0.0 \mathrm{~min}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Reach DP-3: Ex. Wetlands (series B)

Inflow Area $=$	$267,241 \mathrm{sf}$,	0.20% Impervious,	Inflow Depth $=0.00 "$
Inflow	$=$	$0.0 \mathrm{cfs} @$	0.00 hrs, Volume $=$
Outflow	$2-\mathrm{Yr} 24 \mathrm{Hr}$ event		
	$=$	$0.0 \mathrm{cfs} @$	0.00 hrs, Volume $=$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Reach DP-4: 231 Grove Street

Inflow Area $=$	$25,634 \mathrm{sf}$,	0.00% Impervious, Inflow Depth $=0.00 "$ for $2-\mathrm{Yr} 24 \mathrm{Hr}$ event		
Inflow	$=$	$0.0 \mathrm{cfs} @$	0.00 hrs, Volume $=$	0 cf
Outflow	$=$	$0.0 \mathrm{cfs} @$	0.00 hrs , Volume $=$	0 cf, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Subcatchment EX-1: northern locus

Runoff $=12.7$ cfs @ 12.19 hrs, Volume=

54,748 cf, Depth> 1.36"
Routed to Reach DP-1 : Ex. Wetlands (series A)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

	ea (sf)	CN	Description		
55,486		77 V	Woods, Good, HSG D		
	43,817	$61>$	>75\% Grass cover, Good, HSG B		
8,664		$80>$	>75\% Grass cover, Good, HSG D		
369,499		55	Woods, Good, HSG B		
7,032		72	Dirt Path		
$\begin{aligned} & 484,498 \\ & 484,498 \end{aligned}$		59	Weighted Average 100.00\% Pervious Area		Description
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	Capacity (cfs)	
7.0	50	0.0800	0.1		Sheet Flow, overland (woods)
					Woods: Lig
1.7	155	0.0940	1.5		Shallow C
					Woodland
0.0	9	0.1000	6.4		Shallow C
					Paved Kv
2.6	256	0.1110	1.7		Shallow C
					Woodland
0.0	10	0.1000	5.1		Shallow C
					Unpaved
1.2	113	0.0970	1.6		Shallow C Woodland

12.5593 Total

Summary for Subcatchment EX-1.1: central northern locus

Runoff $=\quad 6.6$ cfs @ 12.11 hrs , Volume= $\quad 24,217 \mathrm{cf}$, Depth> 1.22" Routed to Reach DP-1 : Ex. Wetlands (series A)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

Summary for Subcatchment EX-2: northeastern locus

Runoff = 0.3 cfs @ 12.13 hrs , Volume= $1,579 \mathrm{cf}$, Depth> 0.62"
Routed to Reach DP-2 : Grove Street
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

Summary for Subcatchment EX-2.1: southeast corner locus

Runoff $=0.0$ cfs @ 22.57 hrs, Volume $=\quad 30$ cf, Depth> 0.01"

Routed to Reach DP-2 : Grove Street
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

Summary for Subcatchment EX-3: southern locus

Runoff = 0.0 cfs @ 16.97 hrs, Volume= 417 cf, Depth> 0.04"
Routed to Reach DP-3 : Ex. Wetlands (series B)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

Area (sf) CN Description					
$\begin{aligned} & \hline 23,107 \\ & 96,598 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 39 \\ & 30 \\ & \hline \end{aligned}$	>75\% Grass cover, Good, HSG A Woods, Good, HSG A		
$\begin{aligned} & 119,705 \\ & 119,705 \end{aligned}$			Weighted Average 100.00\% Pervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.4	50	0.1000	0.1		Sheet Flow, overland (woods) Woods: Light underbrush $n=0.400 \quad \mathrm{P} 2=3.32$ "
2.5	250	0.1080	1.6		Shallow Concentrated Flow, overland (woods) Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
0.5	114	0.0600	3.9		Shallow Concentrated Flow, overland (grass) Unpaved Kv= 16.1 fps

[^3]
Summary for Subcatchment EX-3.1: central southern locus

Runoff $=0.0$ cfs @ 15.31 hrs, Volume=
859 cf, Depth> 0.08"
Routed to Reach DP-3 : Ex. Wetlands (series B)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

Summary for Subcatchment EX-3.2: south western locus

Runoff $=0.0$ cfs @ 22.55 hrs, Volume= 27 cf, Depth> 0.01"
Routed to Reach DP-3 : Ex. Wetlands (series B)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

Area (sf)		CN	Description			
26,302		30 Woods, Good, HSG A				
26,302		100.00\% Pervious Area				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
12.1	50	0.0200	0.1		Sheet Flow, Woods: Light underbrush $n=0.400$	P2=3.32"
0.9	53	0.0350	0.9		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	

Summary for Subcatchment EX-4: southwest corner locus

Runoff =
$=0.0$ cfs @ 22.54 hrs , Volume=
27 cf, Depth> 0.01"
Routed to Reach DP-4 : 231 Grove Street
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

8.4111 Total

Summary for Reach DP-1: Ex. Wetlands (series A)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Reach DP-2: Grove Street

Inflow Area =	59,299	6.49\% Impervious	Inflow De	0.33" for
Inflow	0.3 cfs @	12.13 hrs , Volume=	1,609 cf	
Outflow	0.3 cfs @	12.13 hrs , Volume=	$1,609 \mathrm{cf}$,	Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Reach DP-3: Ex. Wetlands (series B)

Inflow Area $=$	$267,241 \mathrm{sf}, \quad 0.20 \%$	Impervious,	Inflow Depth $>0.06 "$
Inflow	for $10-\mathrm{Yr} 24 \mathrm{Hr}$ event		
Outflow	$=$	$0.0 \mathrm{cfs} @ 15.57 \mathrm{hrs}$, Volume=	$1,303 \mathrm{cf}$
	$0.0 \mathrm{cfs} @ 15.57 \mathrm{hrs}$, Volume=	$1,303 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Reach DP-4: 231 Grove Street

ow	25,634	0.00\% Imperviou	Depth	0.01" for 10-Yr 24 Hr event
Inflow	0.0 cfs @	22.54 hrs , Volume=	27 cf	
Outflow	0.0 cfs @	22.54 hrs, Volume=	27 cf,	Atten= 0\%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Subcatchment EX-1: northern locus

Runoff $=20.8$ cfs @ 12.18 hrs , Volume=
84,199 cf, Depth> 2.09"
Routed to Reach DP-1 : Ex. Wetlands (series A)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr 24 Hr Rainfall=6.39"

	ea (sf)	CN	Description		
55,486		77 V	Woods, Good, HSG D		
	43,817	$61>$	>75\% Grass cover, Good, HSG B		
8,664		$80>$	>75\% Grass cover, Good, HSG D		
369,499		55	Woods, Good, HSG B		
7,032		72	Dirt Path		
$\begin{aligned} & 484,498 \\ & 484,498 \end{aligned}$		59	Weighted Average 100.00\% Pervious Area		Description
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	Capacity (cfs)	
7.0	50	0.0800	0.1		Sheet Flow, overland (woods)
					Woods: Lig
1.7	155	0.0940	1.5		Shallow C
					Woodland
0.0	9	0.1000	6.4		Shallow C
					Paved Kv
2.6	256	0.1110	1.7		Shallow C
					Woodland
0.0	10	0.1000	5.1		Shallow C
					Unpaved
1.2	113	0.0970	1.6		Shallow C Woodland

12.5593 Total

Summary for Subcatchment EX-1.1: central northern locus

Runoff $=\quad 11.1$ cfs @ 12.11 hrs, Volume=
37,956 cf, Depth> 1.91"
Routed to Reach DP-1 : Ex. Wetlands (series A)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr 24 Hr Rainfall=6.39"

Summary for Subcatchment EX-2: northeastern locus

Runoff = 0.7 cfs @ 12.11 hrs , Volume= 2,839 cf, Depth> 1.11"
Routed to Reach DP-2 : Grove Street
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr 24 Hr Rainfall=6.39"

Summary for Subcatchment EX-2.1: southeast corner locus

Runoff =
0.0 cfs @ 15.06 hrs, Volume=
280 cf, Depth> 0.12"

Routed to Reach DP-2 : Grove Street
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr 24 Hr Rainfall=6.39"

Summary for Subcatchment EX-3: southern locus

Runoff $=\quad 0.1 \mathrm{cfs} @ 13.82$ hrs, Volume= $\quad 1,940 \mathrm{cf}$, Depth> 0.19"
Routed to Reach DP-3 : Ex. Wetlands (series B)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr 24 Hr Rainfall=6.39"

[^4]
Summary for Subcatchment EX-3.1: central southern locus

Runoff $=\quad 0.2 \mathrm{cfs} @ 12.58 \mathrm{hrs}$ @ Volume=
Routed to Reach DP-3: Ex. Wetlands (series B)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr 24 Hr Rainfall=6.39"

Summary for Subcatchment EX-3.2: south western locus

Runoff $=0.0$ cfs @ 15.15 hrs, Volume= 257 cf, Depth> 0.12"
Routed to Reach DP-3 : Ex. Wetlands (series B)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 25-Yr 24 Hr Rainfall=6.39"

Area (sf)		CN	Description			
26,302		30 Woods, Good, HSG A				
	26,302		00.00\% P	rvious Are		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	Capacity (cfs)	Description	
12.1	50	0.0200	0.1		Sheet Flow, Woods: Light underbrush $n=0.400$	P2= 3.32"
0.9	53	0.0350	0.9		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	

Summary for Subcatchment EX-4: southwest corner locus

Runoff $=0.0$ cfs @ 15.09 hrs, Volume=
251 cf, Depth> 0.12"
Routed to Reach DP-4 : 231 Grove Street

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr 24 Hr Rainfall=6.39"

Area (sf)	CN	Description			
25,634	30	Woods, Good, HSG A			
25,634		100.00% Pervious Area			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description

8.4111 Total

Summary for Reach DP-1: Ex. Wetlands (series A)

Inflow Area = 722,454 sf, 1.61\% Impervious, Inflow Depth > 2.03" for 25-Yr 24 Hr event Inflow = 30.1 cfs @ 12.15 hrs , Volume= $122,155 \mathrm{cf}$ Outflow = $30.1 \mathrm{cfs} @ 12.15 \mathrm{hrs}$, Volume $=122,155 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Reach DP-2: Grove Street

Inflow Area $=$	$59,299 \mathrm{sf}, \quad 6.49 \%$ Impervious,	Inflow Depth > $0.63 "$	for $25-\mathrm{Yr} 24 \mathrm{Hr}$ event
Inflow	$=$	$0.7 \mathrm{cfs} @ 12.11 \mathrm{hrs}$, Volume $=$	$3,119 \mathrm{cf}$
Outflow	$=$	$0.7 \mathrm{cfs} @$	12.11 hrs , Volume $=$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Reach DP-3: Ex. Wetlands (series B)

Inflow Area =	267,241	0.20\% Impervious,	Inflow Depth >	0.23" for $25-\mathrm{Yr} 24 \mathrm{Hr}$ event
Inflow	0.2 cfs @	12.61 hrs , Volume=	5,068 cf	
Outflow	0.2 cfs @	12.61 hrs, Volume=	$5,068 \mathrm{cf}$,	Atten= 0\%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Reach DP-4: 231 Grove Street

ow	25	mpervious	Dep	0.12" for $25-\mathrm{Yr} 24 \mathrm{Hr}$ event
Inflow	0.0 cfs @	15.09 hrs , Volume=	251 cf	
Outflow	0.0 cfs @	15.09 hrs , Volume=	251 cf,	Atten=0\%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Subcatchment EX-1: northern locus

Runoff $=34.7$ cfs @ 12.18 hrs, Volume= 135,091 cf, Depth> 3.35"
Routed to Reach DP-1 : Ex. Wetlands (series A)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

12.5593 Total

Summary for Subcatchment EX-1.1: central northern locus

Runoff $=\quad 18.9$ cfs @ 12.11 hrs, Volume=
61,982 cf, Depth> 3.13"
Routed to Reach DP-1 : Ex. Wetlands (series A)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

Summary for Subcatchment EX-2: northeastern locus

Runoff = 1.5 cfs @ 12.10 hrs , Volume= 5,225 cf, Depth> 2.04"
Routed to Reach DP-2 : Grove Street
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

Summary for Subcatchment EX-2.1: southeast corner locus

Runoff =
=
0.1 cfs @ 12.42 hrs, Volume=

1,089 cf, Depth> 0.46"
Routed to Reach DP-2 : Grove Street
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

Summary for Subcatchment EX-3: southern locus

Runoff $=\quad 0.7$ cfs @ 12.40 hrs , Volume= 6,090 cf, Depth> 0.61"
Routed to Reach DP-3 : Ex. Wetlands (series B)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

[^5]
Summary for Subcatchment EX-3.1: central southern locus

Runoff $=0.9$ cfs @ 12.42 hrs, Volume=
7,817 cf, Depth> 0.77"
Routed to Reach DP-3 : Ex. Wetlands (series B)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

Summary for Subcatchment EX-3.2: south western locus

Runoff = $0.1 \mathrm{cfs} @ 12.51 \mathrm{hrs}$, Volume= $1,000 \mathrm{cf}$, Depth> 0.46"
Routed to Reach DP-3 : Ex. Wetlands (series B)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

Area (sf)		CN	Description			
26,302		30 Woods, Good, HSG A				
26,302		100.00\% Pervious Area				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
12.1	50	0.0200	0.1		Sheet Flow, Woods: Light underbrush $n=0.400$	P2=3.32"
0.9	53	0.0350	0.9		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	

Summary for Subcatchment EX-4: southwest corner locus

Runoff =
=
0.1 cfs @ 12.44 hrs, Volume=

978 cf, Depth> 0.46"
Routed to Reach DP-4 : 231 Grove Street
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

Area (sf) CN Description					
25,634		30 Woods, Good, HSG A			
25,634		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.8	50	0.0600	0.1		Sheet Flow, overland (woods) Woods: Light underbrush $\mathrm{n}=0.400 \quad \mathrm{P} 2=3.32$ "
0.6	61	0.1100	1.7		Shallow Concentrated Flow, overland (woods) to 131 Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$

8.4111 Total

Summary for Reach DP-1: Ex. Wetlands (series A)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Reach DP-2: Grove Street

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Reach DP-3: Ex. Wetlands (series B)

Inflow Ar	267,241 sf,	0.20\% Impervious,	In	0.67 " for $100-\mathrm{Yr} 24 \mathrm{Hr}$ event
Inflow	1.7 cfs @	12.42 hrs , Volume=	14,908 cf	
Outflow	1.7 cfs @	12.42 hrs , Volume=	14,908 cf,	Atten $=0 \%, L a g=0.0 \mathrm{~min}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Reach DP-4: 231 Grove Street

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Post-Development Hydrologic Computations

This Page Intentionally Left Blank

22016-POST_REV1

Prepared by RJOC
Printed 12/7/2023
HydroCAD® 10.10-6a s/n 04881 © 2020 HydroCAD Software Solutions LLC

Rainfall Events Listing

Event\#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	2-Yr 24 Hr	Type III 24-hr	Default	24.00	1	3.36	2	
2	10-Yr 24 Hr	Type III 24-hr	Default	24.00	1	5.22	2	
3	25-Yr 24 Hr	Type III 24-hr	Default	24.00	1	6.39	2	
4	100-Yr 24 Hr	Type III 24-hr	Default	24.00	1	8.18	2	

Area Listing (all nodes)

$\begin{array}{r} \text { Area } \\ (\mathrm{sq}-\mathrm{ft}) \end{array}$	CN	Description (subcatchment-numbers)
130,272	39	>75\% Grass cover, Good, HSG A (PR-1.1, PR-1.11, PR-1.4, PR-1.5, PR-1.6, PR-1.7, PR-1.8, PR-1.8A, PR-1.9, PR-2, PR-2.1, PR-3, PR-3.1, PR-3.3, PR-3.4, PR-3.5, PR-3.5A)
113,906	61	>75\% Grass cover, Good, HSG B (PR-1.10, PR-1.13, PR-1.14, PR-1.14A, PR-1.2, PR-1.3, PR-1.9A)
41,808	80	>75\% Grass cover, Good, HSG D (PR-1, PR-1.1, PR-1.11, PR-1.14, PR-1.2, PR-1.3, PR-1.4, PR-1.6, PR-1.6A, PR-1.8, PR-1.9, PR-1.9A, PR-2)
4,295	72	Dirt Path (PR-1)
333,818	98	Impervious Area (PR-1.10, PR-1.11, PR-1.13, PR-1.14, PR-1.14A, PR-1.4, PR-1.5, PR-1.6, PR-1.7, PR-1.8, PR-1.8A, PR-1.9, PR-2, PR-3, PR-3.5)
94,183	98	Roof Area (PR-1.12, PR-1.13, PR-1.14A, PR-1.15, PR-1.5, PR-3.6)
110,470	30	Woods, Good, HSG A (PR-1.1, PR-2.1, PR-3, PR-3.1, PR-3.2, PR-4)
171,609	55	Woods, Good, HSG B (PR-1, PR-1.14, PR-1.2)
74,267	77	Woods, Good, HSG D (PR-1, PR-1.1, PR-1.3)
1,074,628	71	TOTAL AREA

Summary for Subcatchment PR-1: northeastern locus

Runoff $=1.6$ cfs @ 12.23 hrs, Volume=
Routed to Reach DP-1 : Ex. Wetland (series A)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

$12.6 \quad 603$ Total

Summary for Subcatchment PR-1.1: south of BVW A

Runoff = $0.1 \mathrm{cfs} @ 12.30 \mathrm{hrs}$, Volume= $1,096 \mathrm{cf}$, Depth> 0.30"
Routed to Reach DP-1 : Ex. Wetland (series A)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

Area (sf)	CN	Description
21,801	77	Woods, Good, HSG D
120	39	$>75 \%$ Grass cover, Good, HSG A
1,471	80	$>75 \%$ Grass cover, Good, HSG D
20,582	30	Woods, Good, HSG A
43,974	55	Weighted Average
43,974		100.00% Pervious Area

Prepared by RJOC	Printed$12 / 7 / 2023$ HydroCAD® 10.10-6a $\mathrm{s} / \mathrm{n} 04881$ © 2020 HydroCAD Software Solutions LLC

| Tc
 (min) | Length
 (feet) |
| ---: | ---: | | Slope |
| ---: |
| $(\mathrm{ft} / \mathrm{ft})$ |\quad| Velocity |
| ---: |
| $(\mathrm{ft} / \mathrm{sec})$ | | Capacity |
| ---: |
| (cfs) |\quad Description | Direct Entry, |
| :--- |

Summary for Subcatchment PR-1.10: TO PSIS-3

Runoff = 1.2 cfs @ 12.09 hrs , Volume= $3,854 \mathrm{cf}$, Depth> 2.23"
Routed to Pond PSIS-3 : PSIS-3
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

6.0

Direct Entry, min. eng pract

Summary for Subcatchment PR-1.11: TO PSDS-2

Runoff $=\quad 1.5$ cfs @ 12.09 hrs, Volume= 4,675 cf, Depth> 1.97"
Routed to Pond PSDS-2 : PSDS-2
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

Area (sf)	CN	Description
* 22,222	98	Impervious Area
5,404	39	$>75 \%$ Grass cover, Good, HSG A
812	80	$>75 \%$ Grass cover, Good, HSG D
28,438	86	Weighted Average
6,216		21.86% Pervious Area
22,222		78.14% Impervious Area

Tc	Length (min)	(feet)	Slope $(\mathrm{ft} / \mathrm{ft})$
Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)	Description	

6.0

Direct Entry, min. eng pract

Summary for Subcatchment PR-1.12: TO PSIS-2

Runoff $=1.2$ cfs @ 12.08 hrs , Volume=
Routed to Pond PSIS-2 : PSIS-2

4,262 cf, Depth> 3.12"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

	Area (sf)	CN	Description
16,369 98 Roof Area 16,369 100.00% Impervious Area			

Tc			
(min)	Length (feet)		Slope
---:			
$(\mathrm{ft} / \mathrm{ft})$		Velocity	
---:			
$(\mathrm{ft} / \mathrm{sec})$		Capacity	
---:			
(cfs)			

Direct Entry, min. eng pract

Summary for Subcatchment PR-1.13: TO PSIS-4

Runoff $=\quad 5.5$ cfs @ 12.09 hrs , Volume= $\quad 17,355 \mathrm{cf}$, Depth> 2.31"
Routed to Pond PSIS-4 : PSIS-4
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

	Area (sf)	CN	Description
53,830 98 Impervious Area * 18,296 61 >75\% Grass cover, Good, HSG B			
	98	Roof Area	
	90	Weighted Average	
18,296		20.34\% Pervious Area	
71,669		79.66% Impervious Area	

| Tc
 (min) | Length
 (feet) $)$ | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ |
| ---: | ---: | ---: | ---: | | Capacity |
| ---: |
| (cfs) |\quad Description | Direct Entry, min. eng pract |
| :--- |

Summary for Subcatchment PR-1.14: TO PSIS-5

Runoff $=\quad 2.6$ cfs @ 12.09 hrs, Volume= $\quad 7,979 \mathrm{cf}$, Depth> 1.52" Routed to Pond PSIS-5 : PSIS-5

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

Prepared by RJOC	Printed	12/7/2023

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment PR-1.14A: TO PSDS-3

Runoff $=\quad 4.2$ cfs @ 12.09 hrs , Volume= $13,158 \mathrm{cf}$, Depth> 2.41"

Routed to Pond PSDS-3 : PSDS-3
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

	Area (sf)	CN	Description
*	13,139	61	$>75 \%$ Grass cover, Good, HSG B
*	34,839	98	Roof Area
34,634	98	Impervious Area	
65,612	91	Weighted Average	
13,139		20.03\% Pervious Area	
52,473		79.97\% Impervious Area	

Tc	Length (min)	Sloepe $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

6.0 Direct Entry, min. eng pract

Summary for Subcatchment PR-1.15: clubhouse roof

Runoff $=\quad 0.6$ cfs @ 12.08 hrs, Volume= $\quad 2,062$ cf, Depth> 3.12"
Routed to Pond PSIS-7 : PSIS-7
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

| | Area (sf) | CN |
| ---: | ---: | :--- | Description | * |
| :--- |
| 7,918 |
| 7,918 |

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment PR-1.2: northern locus @ prop line

Runoff $=0.5$ cfs @ 12.12 hrs , Volume= 2,034 cf, Depth> 0.55"
Routed to Reach DP-1 : Ex. Wetland (series A)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

Summary for Subcatchment PR-1.3: SE of BVW A

Runoff $=\quad 0.7$ cfs @ 12.10 hrs , Volume= 2,438 cf, Depth> 1.08"
Routed to Reach DP-1 : Ex. Wetland (series A)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

	Area (sf)	CN D	Description		
	9,167	61	>75\% Grass cover, Good, HSG B		
	17,150	$80>$	>75\% Grass cover, Good, HSG D		
	649	77 V	Woods, Good, HSG D		
	26,966	73	Weighted Average		
	26,966		100.00\% P	ervious Are	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment PR-1.4: TO PSIS-8

Runoff $=1.5$ cfs @ 12.09 hrs , Volume=
4,760 cf, Depth> 2.41"
Routed to Pond PSIS-8 : PSIS-8
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

	Area (sf)	CN D	Impervious Area		
*	16,532	98			
	6,483	$80>$	>75\% Grass cover, Good, HSG D		
	723	39	>75\% Grass cover, Good, HSG A		
	23,738	91	Weighted Average		
	7,206		30.36\% Pervious Area		
	16,532		69.64\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	$\begin{array}{r} \text { Length } \\ \text { (feet) } \end{array}$	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment PR-1.5: TO PSIS-3

Runoff $=3.5 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume= $10,821 \mathrm{cf}$, Depth> 2.23"
Routed to Pond PSIS-3 : PSIS-3
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

	Area (sf)	CN D	Description		
*	32,702	98 I	Impervious Area		
	9,258	$39>$	>75\% Grass cover, Good, HSG A		
*	16,379	98 R	Roof Area		
	58,339	89	Weighted Average		
	9,258		15.87\% Pervious Area		
	49,081		84.13\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description

6.0

Direct Entry, min. eng pract

Summary for Subcatchment PR-1.6: TO PSIS-6

Runoff $=\quad 1.7$ cfs @ 12.09 hrs , Volume= $\quad 5,375 \mathrm{cf}$, Depth> 1.59"
Routed to Pond PSIS-6 : PSIS-6
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

Prepared by RJOC	Printed $12 / 7 / 2023$
HydroCAD® 10.10-6a $\sin 04881$ © 2020 HydroCAD Software Solutions LLC	Page 10

Area (sf)	CN	Description
25,841	98	Impervious Area
4,090	80	$>75 \%$ Grass cover, Good, HSG D
10,533	39	$>75 \%$ Grass cover, Good, HSG A
40,464	81	Weighted Average
14,623		36.14\% Pervious Area
25,841		63.86% Impervious Area

Summary for Subcatchment PR-1.6A: TO SWB-3

Runoff $=0.2$ cfs @ 12.09 hrs , Volume= 661 cf , Depth> 1.52"
Routed to Pond SWB-3 : SWB-3
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

Area (sf) CN Description					
$\frac{5,205}{5,205}$		80	75\% Grass cover, Good, HSG D		
			00.00\% P	rvious Are	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	$\begin{gathered} \text { Slope } \\ \text { (ft/ft) } \end{gathered}$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description

Summary for Subcatchment PR-1.7: TO PSIS-3

Runoff =
$=1.2$ cfs @ 12.09 hrs, Volume=
3,683 cf, Depth> 2.14"
Routed to Pond PSIS-3 : PSIS-3
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

Summary for Subcatchment PR-1.8: clubhouse amenity area

Runoff $=0.2$ cfs @ 12.11 hrs , Volume=
704 cf, Depth> 0.55"

Routed to Pond PSIS-7 : PSIS-7
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

	Area (sf)	CN	Description		
*	5,632	98	Impervious Area$>75 \%$ Grass cover, Good, HSG A		
	2,508	39			
	8,140	80	Weighted A	verage	
	2,508		30.81\% Per	vious Area	
	5,632		69.19\% Imp	ervious Ar	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description

Summary for Subcatchment PR-1.9: TO PSIS-3

Runoff $=\quad 0.5$ cfs @ 12.09 hrs , Volume= $1,645 \mathrm{cf}$, Depth> 2.60"
Routed to Pond PSIS-3 : PSIS-3
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

Prepared by RJOC	Printed 12/7/2023
	Pa

Summary for Subcatchment PR-1.9A: TO SWB-2

Runoff =
$=\quad 0.1$ cfs @
12.11 hrs , Volume=

329 cf, Depth> 0.55"
Routed to Pond SWB-2 : SWB-2
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

Area (sf)	CN D	Description
6,695	$61>$	>75\% Grass cover, Good, HSG B
483	$80>$	>75\% Grass cover, Good, HSG D
7,178	62 W	Weighted Average
7,178		100.00\% Pervious Area
Tc Length (min) (feet)	Slope (ft/ft)	Velocity Capacity Description (ft/sec) (cfs)

6.0 Direct Entry, min. eng pract

Summary for Subcatchment PR-2: northeastern locus @ ROW

Runoff =
0.0 cfs @ 12.35 hrs, Volume=

138 cf, Depth> 0.24"
Routed to Reach DP-2 : Grove Street
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

Area (sf)	CN	Description
936	98	Impervious Area
4,916	39	$>75 \%$ Grass cover, Good, HSG A
1,026	80	$>75 \%$ Grass cover, Good, HSG D
6,878	53	Weighted Average
5,942		86.39\% Pervious Area
936		13.61\% Impervious Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, Min. Engineering Practice |
| :--- |

Summary for Subcatchment PR-2.1: southeastern locus @ ROW

Runoff $=0.0 \mathrm{cfs} @ 0.00 \mathrm{hrs}$, Volume= 0 cf, Depth= $0.00{ }^{\prime \prime}$
Routed to Reach DP-2 : Grove Street
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

Direct Entry, Min. Engineering Practice

Summary for Subcatchment PR-3: south of BVW B

Runoff $=\quad 0.0 \mathrm{cfs} @ 0.00 \mathrm{hrs}$, Volume= 0 cf, Depth= 0.00
Routed to Reach DP-3 : Ex. Wetland (seies B)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs
Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

\(\left.$$
\begin{array}{rrrl}\begin{array}{r}\text { Tc } \\
(\mathrm{min})\end{array} & \begin{array}{r}\text { Length } \\
(\mathrm{feet})\end{array} & \begin{array}{r}\text { Slope } \\
(\mathrm{ft} / \mathrm{ft})\end{array} & \begin{array}{r}\text { Velocity } \\
(\mathrm{ft} / \mathrm{sec})\end{array}\end{array}
$$ \begin{array}{r}Capacity

(\mathrm{cfs})\end{array}\right)\) Description | Direct Entry, |
| :--- |

Summary for Subcatchment PR-3.1: north of BVW B

$$
\text { Runoff } \quad=\quad 0.0 \mathrm{cfs} @ 0.00 \mathrm{hrs} \text {, Volume= } \quad 0 \mathrm{cf} \text {, Depth= } 0.00
$$ Routed to Reach DP-3 : Ex. Wetland (seies B)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

Prepared by RJOC	Printed	12/7/2023

	Area (sf)	CN	Description		
	$\begin{aligned} & \hline 17,728 \\ & 24,872 \end{aligned}$	$\begin{aligned} & 30 \\ & 39 \end{aligned}$	Woods, Good, HSG A $>75 \%$ Grass cover, Good, HSG A		
	$\begin{aligned} & \hline 42,600 \\ & 42,600 \end{aligned}$	35	Weighted Average 100.00\% Pervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment PR-3.2: south western locus

Runoff $=0.0$ cfs @ 0.00 hrs, Volume= 0 cf, Depth= $0.00{ }^{\prime \prime}$
Routed to Reach DP-3 : Ex. Wetland (seies B)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

Area (sf)	CN	Description			
26,302	30	Woods, Good, HSG A			
26,302		100.00% Pervious Area			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description

13.0103 Total

Summary for Subcatchment PR-3.3: south of BVW B @ entrance

Runoff $=0.0$ cfs @ 23.86 hrs, Volume $=1$ cf, Depth> 0.00" Routed to Reach DP-3 : Ex. Wetland (seies B)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

	Area (sf)	CN Description			
	5,020	$39>$	>75\% Gras	cover, Go	od, HSG A
5,020		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment PR-3.4: north of BVW B @ entrance

Runoff $=0.0$ cfs @ 23.86 hrs, Volume=
3 cf, Depth> 0.00"

Routed to Reach DP-3 : Ex. Wetland (seies B)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

Area (sf)	CN	Description
11,446	39	$>75 \%$ Grass cover, Good, HSG A
11,446		100.00% Pervious Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | ---: | Description

Summary for Subcatchment PR-3.5: to PSDS-1

Runoff $=\quad 4.0$ cfs @ 12.09 hrs, Volume $=12,422$ cf, Depth> 1.82"
Routed to Pond PSDS-1 : PSDS-1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

Area (sf)	CN	Description
63,022	98	Impervious Area
19,105	39	$>75 \%$ Grass cover, Good, HSG A
82,127	84	Weighted Average
19,105		23.26% Pervious Area
63,022		76.74% Impervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment PR-3.5A: to SWB-1
Runoff $=0.0$ cfs @ 23.86 hrs , Volume= 2 cf , Depth> $0.00{ }^{\prime \prime}$
Routed to Pond SWB-1 : SWB-1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

Area (sf)	CN	Description
8,341	39	$>75 \%$ Grass cover, Good, HSG A
8,341		100.00% Pervious Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ |
| ---: | ---: | ---: | ---: | | Capacity |
| ---: |
| (cfs) |\quad Description | Direct Entry, min. eng pract |
| :--- |

Summary for Subcatchment PR-3.6: bld 1 roof

Runoff $=\quad 1.3$ cfs @ 12.08 hrs , Volume= $4,645 \mathrm{cf}$, Depth> 3.12"
Routed to Pond PSIS-1 : PSIS-1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

Summary for Subcatchment PR-4: southwest corner locus

Runoff $=0.0$ cfs @ 0.00 hrs , Volume= 0 cf, Depth= $0.00{ }^{\prime \prime}$ Routed to Reach DP-4 : 231 Grove Street

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 2-Yr 24 Hr Rainfall=3.36"

Summary for Reach DP-1: Ex. Wetland (series A)

Inflow Area =	rvio	0.25" for
Inflow	2.6 cfs @ 12.19 hrs , Volume=	16,831 cf
Outflow	2.6 cfs @ 12.19 hrs, Volume=	16,831 cf, Atten $=0 \%, L a g=0.0 \mathrm{~min}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Reach DP-2: Grove Street

ow	28,979	3.23\% Impervious,	Inflow Dep	0.06" for 2-Yr 24 Hr event
Inflow	0.0 cfs @	12.35 hrs , Volume=	138 cf	
Outflow	0.0 cfs @	12.35 hrs, Volume=	138 cf,	Atten= 0\%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Reach DP-3: Ex. Wetland (seies B)

| Inflow Area $=$ | 218,588 sf, 37.02% | Impervious, Inflow Depth $>0.00 "$ | for $2-\mathrm{Yr} 24 \mathrm{Hr}$ event |
| :--- | :--- | :--- | :--- | :--- |
| Inflow | $=$ | $0.0 \mathrm{cfs} @ 23.86 \mathrm{hrs}$, Volume $=$ | 5 cf |
| Outflow | $=$ | $0.0 \mathrm{cfs} @ 23.86 \mathrm{hrs}$, Volume $=$ | 5 cf , Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$ |

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Reach DP-4: 231 Grove Street

Inflow Area $=$	$13,667 \mathrm{sf}$,	0.00% Impervious,	Inflow Depth $=0.00 "$	for $2-\mathrm{Yr} 24 \mathrm{Hr}$ event
Inflow	$=$	$0.0 \mathrm{cfs} @$	0.00 hrs, Volume $=$	0 cf
Outflow	$=$	$0.0 \mathrm{cfs} @$	0.00 hrs, Volume $=$	0 cf , Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Pond PSDS-1: PSDS-1

Inflow Area =	82,127	76.74\% Impervious,	Inflow Depth >	1.82" for 2-Yr 24 Hr event
Inflow	4.0 cfs @	12.09 hrs , Volume=	12,422 cf	
Outflow	0.1 cfs @	18.04 hrs, Volume=	3,972 cf,	Atten= 98\%, Lag= 357.2 min
Primary	0.1 cfs @	18.04 hrs , Volume=	3,972 cf	

Routed to Pond SWB-1 : SWB-1
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev=291.01' @ 18.04 hrs Surf.Area=4,105 sf Storage= $8,902 \mathrm{cf}$
Plug-Flow detention time $=353.5$ min calculated for 3,970 cf (32% of inflow)
Center-of-Mass det. time $=225.0 \mathrm{~min}(1,051.6-826.6)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	288.00'	6,666 cf	$46.67^{\prime} \mathrm{W} \times 87.97^{\prime} \mathrm{L} \times 6.75$ 'H Field A 27,710 cf Overall $-11,044$ cf Embedded $=16,665$ cf $\times 40.0 \%$ Voids
\#2A	288.75'	11,044 cf	ADS_StormTech MC-4500 b +Capx 100 Inside \#1 Effective Size= $90.4^{4 " W} \times 60.0^{\prime \prime} \mathrm{H}=>26.46 \mathrm{sf} \times 4.03 \mathrm{~L}=106.5 \mathrm{cf}$ Overall Size= 100.0"W x 60.0"H x 4.33'L with 0.31 ' Overlap 100 Chambers in 5 Rows Cap Storage $=39.5 \mathrm{cf} \times 2 \times 5$ rows $=395.0 \mathrm{cf}$
		17,710 c	Total Available Storage

Prepared by RJOC
HydroCAD® 10.10-6a s/n 04881 © 2020 HydroCAD S
Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices	
\#1	Device 2	293.25'	12.0" Vert. Orifice/Grate X 2.00 C= 0.600	
			Limited to weir flow at low heads	
\#2	Primary	293.25'	24.0" Round Culvert	
			$\mathrm{L}=21.6^{\prime} \mathrm{CPP}$, projecting, no headwall, $\mathrm{Ke}=0.900$	
			Inlet / Outlet Invert= 293.25' / 292.00' S=0.0579 '/' Cc= 0.900	
			$\mathrm{n}=0.010$ PVC, smooth interior, Flow Area $=3.14 \mathrm{sf}$	
\#3	Device 4	288.00'	2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads	
\#4	Primary	288.00'	2.0" Round Culvert	
			$\mathrm{L}=90.0$ ' CPP, mitered to conform to fill, $\mathrm{Ke}=0.700$	
			Inlet / Outlet Invert= 288.00' $/ 286.00^{\prime} \mathrm{S}=0.0222{ }^{\prime} / / \mathrm{Cc}=0.900$	
			$\mathrm{n}=0.010 \mathrm{PVC}$, smooth interior, Flow Area= 0.02 sf	
$\square_{4}^{4}=$ Culvert (Barrel Controls $0.1 \mathrm{cfs} @ 4.0 \mathrm{fps}$)				

Summary for Pond PSDS-2: PSDS-2

2,217 cf Total Available Storage
Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Device 2	310.50'	12.0" Vert. Orifice/Grate X 2.00 C= 0.600
			Limited to weir flow at low heads
\#2	Primary	310.50'	24.0" Round Culvert
			$\mathrm{L}=4.7{ }^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert=310.50' $310.40^{\prime} \mathrm{S}=0.0213^{\prime} / / \mathrm{Cc}=0.900$
			$\mathrm{n}=0.010 \mathrm{PVC}$, smooth interior, Flow Area= 3.14 sf
\#3	Device 4	308.50'	2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Primary	308.50'	2.0" Round Culvert
			$\mathrm{L}=66.0$ ' CPP, mitered to conform to fill, $\mathrm{Ke}=0.700$
			Inlet / Outlet Invert= 308.50' $306.00{ }^{\text {' }} \mathrm{S}=0.0379$ '/' Cc= 0.900
			$\mathrm{n}=0.010 \mathrm{PVC}$, smooth interior, Flow Area= 0.02 sf

Primary OutFlow Max=0.6 cfs @ 12.33 hrs HW=310.83' TW=304.38' (Dynamic Tailwater)
-2 $=$ Culvert (Inlet Controls 0.5 cfs @ 1.5 fps)
_1=Orifice/Grate (Passes 0.5 cfs of 0.9 cfs potential flow)
4=Culvert (Barrel Controls 0.1 cfs @ 4.5 fps)
$\leftarrow_{3}=$ Orifice/Grate (Passes 0.1 cfs of 0.2 cfs potential flow)

Summary for Pond PSDS-3: PSDS-3

Inflow Area = 65,612 sf, 79.97\% Impervious, Inflow Depth > 2.41" for 2-Yr 24 Hr event
Inflow $=4.2$ cfs @ 12.09 hrs , Volume $=13,158 \mathrm{cf}$
Outflow = 0.4 cfs @ 13.07 hrs , Volume= $\quad 7119 \mathrm{cf}$, Atten= 92\%, Lag= 58.9 min
Primary = 0.4 cfs @ 13.07 hrs , Volume= $\quad 119 \mathrm{cf}$
Routed to Pond PSIS-5 : PSIS-5
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 307.22' @ 13.07 hrs Surf.Area= 2,211 sf Storage= 7,617 cf
Plug-Flow detention time $=296.4 \mathrm{~min}$ calculated for $7,119 \mathrm{cf}$ (54% of inflow)
Center-of-Mass det. time= 188.1 min (988.2-800.0)

Volume	Invert	Avail.Storage	Storage Description
\#1A	302.25'	3,737 cf	55.75'W x 39.67'L x 6.75'H Field A
			14,927 cf Overall - 5,586 cf Embedded $=9,342$ cf $\times 40.0 \%$ Voids
\#2A	$303.00{ }^{\prime}$	5,586 cf	ADS_StormTech MC-4500 b +Capx 48 Inside \#1
			Effective Size= 90.4"W x 60.0"H => $26.46 \mathrm{sf} \times 4.03{ }^{\prime} \mathrm{L}=106.5 \mathrm{cf}$
			Overall Size= 100.0"W x 60.0"H x 4.33'L with 0.31' Overlap
			48 Chambers in 6 Rows
			Cap Storage $=39.5 \mathrm{cf} \times 2 \times 6$ rows $=474.0$ cf
		9,322 cf	Total Available Storage

Storage Group A created with Chamber Wizard
Device Routing Invert Outlet Devices
$\begin{array}{lllll}\# 1 & \text { Device } 2 & 307.00 & 12.0 " \text { Vert. Orifice/Grate X } 3.00 \quad \mathrm{C}=0.600\end{array}$
Limited to weir flow at low heads
\#2 Primary 307.00' 24.0" Round Culvert
$\mathrm{L}=28.4$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$

Inlet / Outlet Invert= 307.00' / 306.00' S= 0.0352 '/' Cc= 0.900 $\mathrm{n}=0.010$ PVC, smooth interior, Flow Area= 3.14 sf
\#3 Device $4 \quad 302.2^{\prime} \quad$ 2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4 Primary
302.25' 2.0" Round Culvert
$\mathrm{L}=40.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
Inlet / Outlet Invert= 302.25' / 302.10' S=0.0037 '// Cc= 0.900
$\mathrm{n}=0.010 \mathrm{PVC}$, smooth interior, Flow Area= 0.02 sf

Summary for Pond PSIS-1: PSIS-1

Inflow Area =	17,83	\% Impervious		3.12" for 2-Yr 24 Hr event
Inflow	1.3 cfs @	12.08 hrs , Volume=	4,645 cf	
Outflow	0.2 cfs @	11.75 hrs, Volume=	4,647 cf,	Atten= 82\%, Lag= 0.0 min
Discarded =	0.2 cfs @	11.75 hrs, Volume=	4,647 cf	
Primary	0.0 cfs @	0.00 hrs , Volume=	0 cf	

Routed to Pond SWB-1 : SWB-1
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev=294.47' @ 12.54 hrs Surf.Area= 1,224 sf Storage= 1,154 cf
Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time $=25.5 \mathrm{~min}$ (780.3-754.8)

Volume	Invert	Avail.Storage	Storage Description
\#1A	293.00'	1,162 cf	49.00'W x 24.98'L x 3.50'H Field A
			4,283 cf Overall - 1,378 cf Embedded = 2,905 cf $\times 40.0 \%$ Voids
\#2A	293.50'	1,378 cf	ADS_StormTech SC-740 +Capx 30 Inside \#1
			Effective Size $=44.6 \mathrm{~W} \times 30.0 \mathrm{H} \mathrm{H}=>6.45 \mathrm{sf} \times 7.12 \mathrm{~L}=45.9 \mathrm{cf}$
			Overall Size $=51.0$ "W $\times 30.0$ "H x 7.56'L with 0.44 ' Overlap
			30 Chambers in 10 Rows
		2,540 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Discarded	293.00'	$8.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Device 3	295.00'	12.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#3	Primary	295.00^{\prime}	12.0" Round Culvert
			$\mathrm{L}=3.7^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= 295.00' $/ 294.80$ ' S=0.0541 '/' Cc= 0.900
			$\mathrm{n}=0.010 \mathrm{PVC}$, smooth interior, Flow Area $=0.79 \mathrm{sf}$

Discarded OutFlow Max=0.2 cfs @ 11.75 hrs HW=293.04' (Free Discharge)

1 ${1=E x f i l t r a t i o n ~(E x f i l t r a t i o n ~ C o n t r o l s ~} 0.2$ cfs)
Primary OutFlow Max=0.0 cfs @ 0.00 hrs HW=293.00' TW=286.00' (Dynamic Tailwater)
$\leftarrow_{3=C u l v e r t ~(~ C o n t r o l s ~} 0.0 \mathrm{cfs}$)
$L_{2=O r i f i c e / G r a t e ~(C o n t r o l s ~} 0.0 \mathrm{cfs}$)

Summary for Pond PSIS-2: PSIS-2

Inflow Area =	16,36	00.00\% Impervious,	促	3.12" for 2-Yr 24 Hr event
Inflow	1.2 cfs @	12.08 hrs, Volume=	4,262 cf	
Outflow	0.1 cfs @	11.64 hrs , Volume=	4,263 cf,	Atten $=90 \%$, Lag $=0.0 \mathrm{~min}$
Discarded =	0.1 cfs @	11.64 hrs , Volume=	4,263 cf	
Primary	0.0 cfs @	0.00 hrs , Volume=	0 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 308.63' @ 12.87 hrs Surf.Area= 2,128 sf Storage= 1,425 cf
Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time= $80.2 \mathrm{~min}(835.1$-754.8)

Volume	Invert	Avail.Storage	Storage Description
\#1A	307.50'	1,514 cf	54.83'W $\times 38.80{ }^{\prime} \mathrm{L} \times 2.33$ 'H Field A
			4,964 cf Overall - 1,179 cf Embedded $=3,785$ cf $\times 40.0 \%$ Voids
\#2A	308.00'	1,179 cf	ADS_StormTech SC-310 +Capx 80 Inside \#1
			Effective Size $=28.9$ "W $\times 16.0$ H $\mathrm{H}=>2.07 \mathrm{sf} \times 7.12 \mathrm{~L}=14.7 \mathrm{cf}$
			Overall Size $=34.0$ 'W x 16.0"H x 7.56'L with 0.44 ' Overlap
			80 Chambers in 16 Rows
2,693 cf Total Available Storage			
Storage Group A created with Chamber Wizard			
Device	Routing	Invert Outlet Devices	
\#1	Discarded	$307.50{ }^{\prime} 2.410$	2.410 in/hr Exfiltration over Surface area
\#2	Device 3	308.83' 6.	Vert. Orifice/Grate X 8.00 C= 0.600
			ed to weir flow at low heads
\#3	Primary	$308.83{ }^{\prime} \begin{array}{ll}18 \\ & \mathrm{~L}= \\ & \text { In } \\ \\ \mathrm{n}=\end{array}$	" Round Culvert
			3.5' CPP, projecting, no headwall, $\mathrm{Ke=} 0.900$
			/ Outlet Invert= 308.83' / 307.00' S=0.1356 '/' Cc= 0.900
			.010 PVC, smooth interior, Flow Area= 1.77 sf

Discarded OutFlow Max=0.1 cfs @ 11.64 hrs HW=307.53' (Free Discharge)
—1=Exfiltration (Exfiltration Controls 0.1 cfs)
Primary OutFlow Max=0.0 cfs @ 0.00 hrs HW=307.50' TW=304.00' (Dynamic Tailwater)
$L_{3}=$ Culvert (Controls 0.0 cfs)
$L_{2=O r i f i c e / G r a t e ~(C o n t r o l s ~} 0.0 \mathrm{cfs}$)

Summary for Pond PSIS-3: PSIS-3

Inflow Area =	10	perviou	Depth >	2.24" for $2-\mathrm{Yr} 24 \mathrm{Hr}$ event
Inflow	6.4 cfs @	12.09 hrs , Volume=	20,003 cf	
Outflow	1.0 cfs @	11.80 hrs , Volume=	20,014 cf,	Atten= 84\%, Lag= 0.0 min
Discarded =	1.0 cfs @	11.80 hrs , Volume=	20,014 cf	
Primary	0.0 cfs @	0.00 hrs , Volume=	0 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 279.31' @ 12.57 hrs Surf.Area= 5,421 sf Storage= 5,693 cf

Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time= 33.9 min (841.6-807.7)

Discarded OutFlow Max=1.0 cfs @ 11.80 hrs HW=277.57' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 1.0 cfs)
Primary OutFlow Max=0.0 cfs @ 0.00 hrs HW=277.50' TW=0.00' (Dynamic Tailwater)
-3=Culvert (Controls 0.0 cfs)
$L_{2=O r i f i c e / G r a t e ~(C o n t r o l s ~} 0.0 \mathrm{cfs}$)

Summary for Pond PSIS-4: PSIS-4

Inflow Area	89,965 sf, 79.66\% Impervious,		Depth >	2.31" for 2-Yr 24 Hr event
Inflow	5.5 cfs @	12.09 hrs , Volume=	17,355 cf	
Outflow	0.3 cfs @	11.49 hrs , Volume=	13,456 cf,	Atten $=95 \%, L a g=0.0 \mathrm{~min}$
Discarded	0.3 cfs @	11.49 hrs , Volume=	13,456 cf	
Primary	0.0 cfs @	0.00 hrs , Volume=	0 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Prepared by RJOC
HydroCAD® 10.10-6a s/n 04881 © 2020 HydroCAD Software Solutions LLC

HydroCAD® 10.10-6a s/n 04881 © 2020 HydroCAD Software Solutions LLC
Peak Elev= 279.99' @ 14.88 hrs Surf.Area= 4,560 sf Storage= 8,696 cf
Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time= 192.0 min (996.3-804.4)

Volume	Invert	Avail.Storage	Storage Description
\#1	$277.50{ }^{\prime}$	$27,803 \mathrm{cf} \quad \begin{aligned} & \text { 120.0" Round Pipe Storage } x 3 \\ & \mathrm{~L}=118.0^{\prime}\end{aligned}$	
\#2	$277.00{ }^{\prime}$	10,767 cf	$38.00^{\prime} \mathrm{W} \times 120.00^{\prime} \mathrm{L} \times 12.00^{\prime} \mathrm{H}$ Prismatoid 54,720 cf Overall $-27,803$ cf Embedded $=26,917$ cf $\times 40.0 \%$ Voids
38,570 cf Total Available Storage			
Device	Routing	Invert Outl	t Devices
\#1	Discarded	277.00' 2.41	in/hr Exfiltration over Surface area
\#2	Device 3	287.00' 6.0'	Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#3	Primary	$\begin{array}{ll} 287.00 & \begin{array}{l} \text { 6.0" } \\ \\ \\ \\ \\ \\ \text { Inlet } \\ \\ n=0 \end{array} \end{array}$	Round Culvert 0^{\prime} CPP, projecting, no headwall, $\mathrm{Ke}=0.900$ / Outlet Invert= 287.00' $286.80^{\prime} \quad \mathrm{S}=0.0400$ '/' Cc= 0.900 010 PVC, smooth interior, Flow Area= 0.20 sf

Discarded OutFlow Max=0.3 cfs @ 11.49 hrs
$\mathbf{L}_{1=\text { Exfiltration (Exfiltration Controls } 0.3 \mathrm{cfs} \text {) }}$ HW=277.12' (Free Discharge)

Primary OutFlow Max=0.0 cfs @ 0.00 hrs HW=277.00' TW=0.00' (Dynamic Tailwater)
${ }^{4}-3=$ Culvert (Controls 0.0 cfs)
$\mathcal{L}_{\mathbf{2}=\text { Orifice/Grate (Controls } 0.0 \mathrm{cfs} \text {) }}$

Summary for Pond PSIS-5: PSIS-5

Inflow Area =	128,432 sf, 66.34\% Impervious,	Depth >	1.41" for $2-\mathrm{Yr} 24 \mathrm{Hr}$ event
Inflow	2.7 cfs @ 12.09 hrs , Volume=	15,098 cf	
Outflow	0.2 cfs @ 11.78 hrs, Volume=	11,724 cf,	Atten= 91%, Lag $=0.0 \mathrm{~min}$
Discarded =	0.2 cfs @ 11.78 hrs, Volume=	11,724 cf	
Primary	0.0 cfs @ 0.00 hrs , Volume=	0 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 287.05' @ 16.09 hrs Surf.Area= 4,320 sf Storage= 5,372 cf

Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time= $122.3 \mathrm{~min}(1,031.9$-909.6 $)$

Volume	Invert	Avail.Storage	Storage Description
\#1	285.50'	11,585 cf	60.0" Round Pipe Storage x 5 Inside \#2 L=118.0'
\#2	285.00'	5,734 cf	36.00'W x 120.00'L x 6.00'H Prismatoid 25,920 cf Overall $-11,585$ cf Embedded $=14,335 \mathrm{cf} \times 40.0 \%$ Voids
		17,319 cf	Total Available Storage

Device	Routing	Invert	Outlet Devices
\#1	Discarded	285.00'	$2.410 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Device 3	288.50'	24.0" Vert. Orifice/Grate X $5.00 \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#3	Primary	$288.50{ }^{\prime}$	30.0" Round Culvert
			$\mathrm{L}=19.1$ ' CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= 288.50' / 287.50' S=0.0524 '/'
			$\mathrm{n}=0.010$ PVC, smooth interior, Flow Area= 4.91 sf
Discarded OutFlow Max=0.2 cfs @ 11.78 hrs HW=285.06' (Free Discharge)$\pm 1=$ Exfiltration (Exfiltration Controls 0.2 cfs)			
Primary OutFlow Max=0.0 cfs @ 0.00 hrs HW=285.00' TW=0.00' (Dynamic Tailwater) ${ }^{-}-3=$ Culvert (Controls 0.0 cfs) $\boldsymbol{L}_{2}=$ Orifice/Grate (Controls 0.0 cfs)			

Summary for Pond PSIS-6: PSIS-6

Inflow Area =	40,46	63.86\% Imperviou	pth	1.59" for 2-Yr 24 Hr event
Inflow	1.7 cfs @	12.09 hrs , Volume=	5,375 cf	
Outflow	0.4 cfs @	11.95 hrs , Volume=	5,378 cf,	Atten= 77\%, Lag= 0.0 min
Discarded =	0.4 cfs @	11.95 hrs , Volume=	5,378 cf	
Primary	0.0 cfs @	0.00 hrs , Volume=	0 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 278.62' @ 12.52 hrs Surf.Area= 2,039 sf Storage= $1,220 \mathrm{cf}$
Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time= 17.3 min (853.6-836.3)

Volume	Invert	Avail.Storage	Storage Description
\#1A	277.50'	$3,550 \mathrm{cf}$	73.92'W x 27.59'L x 6.75'H Field A
			13,767 cf Overall - 4,892 cf Embedded $=8,875$ cf $\times 40.0 \%$ Voids
\#2A	278.25'	4,892 cf	ADS_StormTech MC-4500 b +Capx 40 Inside \#1
			Effective Size $=90.4$ "W x 60.0"H $=>26.46 \mathrm{sf} \times 4.03 \mathrm{~L}=106.5 \mathrm{cf}$
			Overall Size $=100.0$ " $\mathrm{W} \times 60.0 \mathrm{H} \times 4.33$ 'L with 0.31 ' Overlap
			40 Chambers in 8 Rows
			Cap Storage $=39.5 \mathrm{cf} \times 2 \times 8$ rows $=632.0 \mathrm{cf}$
		8,442 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Discarded	277.50'	$8.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Device 3	284.00'	12.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#3	Primary	284.00'	12.0" Round Culvert
			$\mathrm{L}=19.5^{\prime} \mathrm{CPP}$, projecting, no headwall, $\mathrm{Ke}=0.900$ Inlet / Outlet Invert=284.00' $283.50^{\prime} \mathrm{S}=0.0256$ '// Cc= 0.900 $\mathrm{n}=0.010$ PVC, smooth interior, Flow Area= 0.79 sf

Discarded OutFlow Max=0.4 cfs @ 11.95 hrs HW=277.58' (Free Discharge)

1 ${1=E x f i l t r a t i o n ~(E x f i l t r a t i o n ~ C o n t r o l s ~}^{0.4}$ cfs)
Primary OutFlow Max=0.0 cfs @ 0.00 hrs HW=277.50' TW=279.00' (Dynamic Tailwater)
$\leftarrow_{3=C u l v e r t ~(~ C o n t r o l s ~} 0.0 \mathrm{cfs}$)
$L_{2=O r i f i c e / G r a t e ~(C o n t r o l s ~} 0.0 \mathrm{cfs}$)

Summary for Pond PSIS-7: PSIS-7

Inflow Area =	31	61.99\% Imperviou	Depth >	1.45" for 2-Yr 24 Hr event
Inflow	1.1 cfs @	12.09 hrs , Volume=	3,800 cf	
Outflow	0.1 cfs @	11.72 hrs , Volume=	3,801 cf,	Atten= 92\%, Lag= 0.0 min
Discarded =	0.1 cfs @	11.72 hrs , Volume=	3,801 cf	
Primary	0.0 cfs @	0.00 hrs , Volume=	0 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev=289.33' @ 13.57 hrs Surf.Area= 1,616 sf Storage= 1,359 cf
Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time= 124.8 min (930.1-805.3)

Volume	Invert	Avail.Storage	Storage Description
\#1A	288.00'	1,528 cf	26.25'W x 61.58'L x 3.50'H Field A
			5,657 cf Overall - 1,838 cf Embedded $=3,820$ cf $\times 40.0 \%$ Voids
\#2A	288.50'	1,838 cf	ADS_StormTech SC-740 +Capx 40 Inside \#1
			Effective Size $=44.6$ "W $\times 30.0$ 'H $=>6.45 \mathrm{sf} \times 7.12 \mathrm{~L}=45.9 \mathrm{cf}$
			Overall Size $=51.0$ "W $\times 30.0$ "H $\times 7.56{ }^{\prime} \mathrm{L}$ with 0.44 ' Overlap
			40 Chambers in 5 Rows
3,366 cf Total Available Storage			
Storage Group A created with Chamber Wizard			
Device	Routing	Invert Outlet Devices	
\#1	Discarded	288.00' 2.410 in/hr Exfiltration over Surface area	
\#2	Device 3	290.00' 12.0	12.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#3	Primary	290.00' 12.0" Round Culvert	
	$\mathrm{L}=29.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$		
		Inlet / Outlet Invert= 290.00' / 288.00' S=0.0690 '/' Cc= 0.900	
	$\mathrm{n}=0.010$ PVC, smooth interior, Flow Area= 0.79 sf		

Discarded OutFlow Max=0.1 cfs @ 11.72 hrs HW=288.04' (Free Discharge)
L1=Exfiltration (Exfiltration Controls 0.1 cfs)
Primary OutFlow Max=0.0 cfs @ 0.00 hrs HW=288.00' TW=279.00' (Dynamic Tailwater)
${ }^{-} 3=$ Culvert (Controls 0.0 cfs)
$L_{2=O r i f i c e / G r a t e ~(~ C o n t r o l s ~} 0.0 \mathrm{cfs}$)

Summary for Pond PSIS-8: PSIS-8

Inflow Area =	23,73	69.64\% Imperviou	促	41" for 2-Yr 24 Hr event
Inflow	1.5 cfs @	12.09 hrs , Volume=	4,760 cf	
Outflow	0.2 cfs @	11.75 hrs , Volume=	4,761 cf,	Atten= 86%, Lag $=0.0 \mathrm{~min}$
Discarded =	0.2 cfs @	11.75 hrs , Volume=	4,761 cf	
Primary	0.0 cfs @	0.00 hrs , Volume=	0 cf	

Routed to Reach DP-1 : Ex. Wetland (series A)
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 274.00' @ 12.61 hrs Surf.Area= 1,108 sf Storage= 1,455 cf

Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time $=44.5 \mathrm{~min}$ (844.5-800.0)

Volume	Invert	Avail.Storage	Storage Description
\#1A	272.00'	1,611 cf	22.75'W x 48.72'L x 5.50'H Field A
			6,096 cf Overall - 2,069 cf Embedded $=4,028$ cf $\times 40.0 \%$ Voids
\#2A	272.75'	2,069 cf	ADS_StormTech MC-3500 d +Capx 18 Inside \#1
			Effective Size $=70.4$ "W $\times 45.0$ " $\mathrm{H}=>15.33 \mathrm{sf} \times 7.17 \mathrm{~L}=110.0 \mathrm{cf}$
			Overall Size $=77.0^{\prime \prime} \mathrm{W} \times 45.0{ }^{\prime \prime} \mathrm{H} \times 7.50^{\prime} \mathrm{L}$ with 0.33^{\prime} Overlap
			18 Chambers in 3 Rows
			Cap Storage $=14.9 \mathrm{cf} \times 2 \times 3$ rows $=89.4 \mathrm{cf}$

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Discarded	272.00'	$8.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Device 3	276.00'	6.0" Vert. Orifice/Grate X 2.00 C= 0.600
			Limited to weir flow at low heads
\#3	Primary	276.00'	12.0" Round Culvert
			$\mathrm{L}=5.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert=276.00' / 275.30' S=0.1400 '/' Cc= 0.900
			$\mathrm{n}=0.010$ PVC, smooth interior, Flow Area= 0.79 sf

Discarded OutFlow Max=0.2 cfs @ 11.75 hrs HW=272.06' (Free Discharge)
—1=Exfiltration (Exfiltration Controls 0.2 cfs)
Primary OutFlow Max=0.0 cfs @ 0.00 hrs HW=272.00' TW=0.00' (Dynamic Tailwater)
—3=Culvert (Controls 0.0 cfs)
${ }^{-}$2=Orifice/Grate (Controls 0.0 cfs)

Inflow Area =	108,307	66\% Impervious	Depth >	0.44" for 2-Yr 24 Hr event
Inflow	0.1 cfs @	18.71 hrs, Volume=	3,974 cf	
Outflow	0.1 cfs @	18.71 hrs, Volume=	3,974 cf,	Atten=0\%, Lag= 0.0 min
Discarded =	0.1 cfs @	18.71 hrs, Volume=	3,974 cf	
Primary	0.0 cfs @	0.00 hrs , Volume=	0 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev=286.00' @ 0.00 hrs Surf.Area= 2,700 sf Storage= 0 cf
Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time= (not calculated: outflow precedes inflow)

Volume	Invert Ava	ail.Storage	Storage Descriptio		
\#1	286.00'	15,124 cf	Custom Stage Data (Irregular)Listed below (Recalc)		
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	$\begin{array}{r} \text { Wet.Area } \\ (\mathrm{sq}-\mathrm{ft}) \end{array}$
286.00	2,700	234.0	0	0	2,700
288.00	3,710	309.0	6,383	6,383	5,986
290.00	5,066	373.0	8,741	15,124	9,526

Device	Routing	Invert	Outlet Devices
\#1	Discarded	286.00'	$8.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Primary	289.50'	20.0' long x 10.0' breadth Broad-Crested Rectangular Weir Head (feet) $0.20 \begin{array}{lllllll}0.40 & 0.60 & 0.80 & 1.00 & 1.20 & 1.40 & 1.60\end{array}$
			Coef. (English) 2.492 .562 .702 .692 .682 .692 .672 .64

Discarded OutFlow Max=0.0 cfs @ 18.71 hrs HW=286.00' (Free Discharge)

Primary OutFlow Max=0.0 cfs @ 0.00 hrs HW=286.00' TW=0.00' (Dynamic Tailwater)
$L_{2=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~} 0.0 \mathrm{cfs}$)

Summary for Pond SWB-2: SWB-2

Inflow Area =	51,985	74.23\% Impervious	pth	1.14" for 2-Yr 24 Hr event
Inflow	0.7 cfs @	12.32 hrs , Volume=	4,941 cf	
Outflow	0.1 cfs @	16.91 hrs, Volume=	1,957 cf,	Atten= 86\%, Lag $=275.1 \mathrm{~min}$
Primary	0.1 cfs @	16.91 hrs, Volume=	1,957 cf	

Routed to Reach DP-1 : Ex. Wetland (series A)
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 305.32' @ 16.91 hrs Surf.Area= 2,852 sf Storage= 3,009 cf
Plug-Flow detention time $=435.9$ min calculated for 1,957 cf (40% of inflow)
Center-of-Mass det. time= $232.1 \mathrm{~min}(1,177.8$-945.7)

Volume	Invert Ava	I.Storage	Storage Descriptio		
\#1	304.00'	5,186 cf	Custom Stage Data (Irregular)Listed below (Recalc)		
Elevation (feet)	Surf.Area (sq-ft)	Perim (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
304.00	1,766	207.0	0	0	1,766
306.00	3,520	316.0	5,186	5,186	6,333

Device	Routing	Invert	Outlet Devices
\#1	Primary	305.30'	20.0' long x 10.0' breadth Broad-Crested Rectangular Weir Head (feet) $0.20 \quad 0.400 .60 \quad 0.801 .001 .201 .401 .60$
			Coef. (English) $2.492 .562 .702 .692 .682 .692 .67 \quad 2.64$

Primary OutFlow Max=0.1 cfs @ 16.91 hrs HW=305.32' TW=0.00' (Dynamic Tailwater)
-1 $_{1=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(W e i r ~ C o n t r o l s ~} 0.1$ cfs @ 0.3 fps)

Summary for Pond SWB-3: SWB-3

Inflow A	77,090 sf, 58.79\% Impervious, Inflow Depth > 0.10" for 2-Yr 24 Hr event			
Inflow	0.2 cfs @	12.09 hrs , Volume=	661 cf	
Outflow	0.0 cfs @	0.00 hrs , Volume=	0 cf,	Atten $=100 \%, L a g=0.0 \mathrm{~min}$
Primary	0.0 cfs @	0.00 hrs , Volume=	0 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 279.22' @ 24.00 hrs Surf.Area= 3,065 sf Storage= 661 cf

Plug-Flow detention time=(not calculated: initial storage exceeds outflow)
Center-of-Mass det. time= (not calculated: no outflow)

Volume	Inver	ert Ava	torage	Storage Descripti		
\#1	279.00		,892 cf	Custom Stage D	(Irregular)Lis	ow (Recalc)
Elevation (feet)		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	$\begin{array}{r} \text { Wet.Area } \\ (\mathrm{sq}-\mathrm{ft}) \\ \hline \end{array}$
279.00		2,973	291.0	0	0	2,973
280.00		3,403	303.0	3,186	3,186	3,613
282.00		4,322	329.0	7,707	10,892	5,066
Device	Routing	Invert Outle	Outlet Devices			
\#1 P	Primary		20.0' long x 10.0' breadth Broad-Crested Rectangular Wei Head (feet) $0.20 \quad 0.400 .60 \quad 0.801 .001 .201 .401 .60$			

Primary OutFlow Max=0.0 cfs @ 0.00 hrs HW=279.00' TW=0.00' (Dynamic Tailwater)
—1=Broad-Crested Rectangular Weir(Controls 0.0 cfs)

Prepared by RJOC	Printed$12 / 7 / 2023$ HydroCAD® 10.10-6a $\mathrm{s} / \mathrm{n} 04881$ © 2020 HydroCAD Software Solutions LLC 29 \mathbf{l}

Summary for Subcatchment PR-1: northeastern locus

Runoff = 6.6 cfs @ 12.19 hrs , Volume=
Routed to Reach DP-1 : Ex. Wetland (series A)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

12.6603 Total

Summary for Subcatchment PR-1.1: south of BVW A

Runoff $=1.1$ cfs @ 12.10 hrs, Volume= Routed to Reach DP-1 : Ex. Wetland (series A)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

Area (sf)	CN	Description
21,801	77	Woods, Good, HSG D
120	39	$>75 \%$ Grass cover, Good, HSG A
1,471	80	$>75 \%$ Grass cover, Good, HSG D
20,582	30	Woods, Good, HSG A
43,974	55	Weighted Average
43,974		100.00% Pervious Area

| Tc
 (min) | Length
 (feet) |
| ---: | ---: | | Slope |
| ---: |
| $(\mathrm{ft} / \mathrm{ft})$ | | Velocity |
| ---: |
| $(\mathrm{ft} / \mathrm{sec})$ | | Capacity |
| ---: |
| (cfs) |\quad Description | Direct Entry, |
| :--- |

Summary for Subcatchment PR-1.10: TO PSIS-3

Runoff = 2.2 cfs @ 12.09 hrs , Volume= 6,891 cf, Depth> 3.98"
Routed to Pond PSIS-3 : PSIS-3
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

Summary for Subcatchment PR-1.11: TO PSDS-2

Runoff $=\quad 2.8 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume= $\quad 8,695 \mathrm{cf}$, Depth> 3.67"
Routed to Pond PSDS-2 : PSDS-2
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

Area (sf)	CN	Description
* 22,222	98	Impervious Area
5,404	39	$>75 \%$ Grass cover, Good, HSG A
812	80	$>75 \%$ Grass cover, Good, HSG D
28,438	86	Weighted Average
6,216		21.86% Pervious Area
22,222		78.14% Impervious Area

Tc	Length (min)	(feet)	Slope $(\mathrm{ft} / \mathrm{ft})$
Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)	Description	

6.0

Direct Entry, min. eng pract

Summary for Subcatchment PR-1.12: TO PSIS-2

Runoff $=1.9$ cfs @ 12.08 hrs, Volume=
6,792 cf, Depth> 4.98"
Routed to Pond PSIS-2 : PSIS-2
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

	Area (sf)	CN	Description
16,369 98 Roof Area 16,369 100.00% Impervious Area			

Tc			
(min)	Length (feet)		Slope
---:			
$(\mathrm{ft} / \mathrm{ft})$		Velocity	
---:			
$(\mathrm{ft} / \mathrm{sec})$		Capacity	
---:			
(cfs)			

Direct Entry, min. eng pract

Summary for Subcatchment PR-1.13: TO PSIS-4

Runoff $=\quad 9.5$ cfs @ 12.08 hrs, Volume= 30,625 cf, Depth> 4.08"
Routed to Pond PSIS-4 : PSIS-4
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

	Area (sf)	CN	Description
53,830 98 Impervious Area * 18,296 61 >75\% Grass cover, Good, HSG B			
	98	Roof Area	
	90	Weighted Average	
18,296		20.34\% Pervious Area	
71,669		79.66% Impervious Area	

| Tc
 (min) | Length
 (feet) $)$ | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ |
| ---: | ---: | ---: | ---: | | Capacity |
| ---: |
| (cfs) |\quad Description | Direct Entry, min. eng pract |
| :--- |

Summary for Subcatchment PR-1.14: TO PSIS-5

Runoff $=\quad 5.2$ cfs @ 12.09 hrs, Volume= 16,135 cf, Depth> 3.08" Routed to Pond PSIS-5 : PSIS-5

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

Prepared by RJOC	Printed 12/7/2023
	Pa

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment PR-1.14A: TO PSDS-3

Runoff = 7.1 cfs @ 12.08 hrs, Volume= 22,921 cf, Depth> 4.19"

Routed to Pond PSDS-3 : PSDS-3
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

	Area (sf)	CN	Description
	13,139	61	$>75 \%$ Grass cover, Good, HSG B
$*$	17,839	98	Roof Area
*	34,634	98	Impervious Area
65,612	91	Weighted Average	
13,139		20.03\% Pervious Area	
	52,473		79.97% Impervious Area

$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description

6.0 Direct Entry, min. eng pract

Summary for Subcatchment PR-1.15: clubhouse roof

Runoff $=\quad 0.9$ cfs @ 12.08 hrs, Volume= 3,285 cf, Depth> 4.98"

Routed to Pond PSIS-7 : PSIS-7
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

| | Area (sf) | CN |
| ---: | ---: | :--- | Description | * |
| :--- |
| 7,918 |
| 7,918 |

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment PR-1.2: northern locus @ prop line

Runoff = 1.7 cfs @ 12.10 hrs , Volume= $5,819 \mathrm{cf}$, Depth> 1.57"
Routed to Reach DP-1 : Ex. Wetland (series A)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

Summary for Subcatchment PR-1.3: SE of BVW A

Runoff $=\quad 1.8 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume= $\quad 5,508 \mathrm{cf}$, Depth> 2.45"
Routed to Reach DP-1 : Ex. Wetland (series A)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

	Area (sf)	CN D	Description		
	9,167	61	>75\% Grass cover, Good, HSG B		
	17,150	$80>$	>75\% Grass cover, Good, HSG D		
	649	77 V	Woods, Good, HSG D		
	26,966	73	Weighted Average		
	26,966		100.00\% P	ervious Are	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment PR-1.4: TO PSIS-8

Runoff $=\quad 2.6$ cfs @ 12.08 hrs, Volume=
8,293 cf, Depth> 4.19"
Routed to Pond PSIS-8 : PSIS-8
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

Summary for Subcatchment PR-1.5: TO PSIS-3

Runoff = 6.1 cfs @ 12.09 hrs, Volume= 19,345 cf, Depth> 3.98"

Routed to Pond PSIS-3 : PSIS-3
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

		Area (sf)	CN	Impervious Area		
*		32,702	98			
		9,258	39	>75\% Grass	cover, God	od, HSG A
*		16,379	98	Roof Area		
		58,339	89	Weighted Average		
		9,258		15.87\% Pervious Area		
		49,081		84.13\% Imp	ervious Ar	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description

6.0

Direct Entry, min. eng pract

Summary for Subcatchment PR-1.6: TO PSIS-6

Runoff $=3.5$ cfs @ 12.09 hrs, Volume= 10,713 cf, Depth> 3.18"
Routed to Pond PSIS-6 : PSIS-6
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

Prepared by RJOC	Printed	12/7/2023

Area (sf)	CN	Description
25,841	98	Impervious Area
4,090	80	$>75 \%$ Grass cover, Good, HSG D
10,533	39	$>75 \%$ Grass cover, Good, HSG A
40,464	81	Weighted Average
14,623		36.14% Pervious Area
25,841		63.86% Impervious Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ |
| ---: | ---: | ---: | :--- | | Capacity |
| ---: |
| (cfs) |\quad Description | Direct Entry, min. eng pract |
| :--- |

Summary for Subcatchment PR-1.6A: TO SWB-3

Runoff = 0.4 cfs @ 12.09 hrs , Volume= $1,337 \mathrm{cf}$, Depth> 3.08"
Routed to Pond SWB-3 : SWB-3
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

	Area (sf)	CN Description			
	5,205	80	75\% Gras	cover, Go	od, HSG D
5,205		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{r} \text { Length } \\ \text { (feet) } \end{array}$	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description

Summary for Subcatchment PR-1.7: TO PSIS-3

Runoff =
$=\quad 2.1$ cfs @ 12.09 hrs, Volume=
6,670 cf, Depth> 3.87"
Routed to Pond PSIS-3 : PSIS-3
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

Summary for Subcatchment PR-1.8: clubhouse amenity area

Runoff $=0.6$ cfs @ 12.10 hrs , Volume= 2,014 cf, Depth> 1.57"
Routed to Pond PSIS-7 : PSIS-7

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

	Area (sf)	CN D	Description		
*	5,928	98 Im	Impervious Area $>75 \%$ Grass cover, Good, HSG D $>75 \%$ Grass cover, Good, HSG A		
	124	$80>$			
	9,311	$39>$			
	15,363	62	Weighted Average 61.41\% Pervious Area 38.59\% Impervious Area		
	9,435				
	5,928				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entr

Summary for Subcatchment PR-1.8A: TO PSIS-7

Runoff = 0.7 cfs @ 12.09 hrs , Volume= 2,091 cf, Depth> 3.08"
Routed to Pond PSIS-7 : PSIS-7
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

	Area (sf)	CN	Description		
*	$\begin{aligned} & \hline 5,632 \\ & 2,508 \end{aligned}$	$\begin{aligned} & 98 \\ & 39 \end{aligned}$	Impervious Area $>75 \%$ Grass cover Good HSG A		
	$\begin{aligned} & 8,140 \\ & 2,508 \\ & 5,632 \end{aligned}$	80	Weighted Average 30.81\% Pervious Area 69.19\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{aligned} & \text { Capacity } \\ & \text { (cfs) } \end{aligned}$	Description

Summary for Subcatchment PR-1.9: TO PSIS-3

Runoff $=\quad 0.8$ cfs @ 12.08 hrs , Volume= $2,794 \mathrm{cf}$, Depth> 4.41"
Routed to Pond PSIS-3 : PSIS-3
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

Prepared by RJOC	Printed12/7/2023 HydroCAD® 10.10-6a $\mathrm{s} / \mathrm{n} 04881$ © 2020 HydroCAD Software Solutions LLC $\mathbf{P a g e} 37$

	Area (sf)	CN D	Description		
*	6,615	98 Im	Impervious Area		
	568	$39>$	>75\% Grass cover, Good, HSG A		
	419	$80>$	>75\% Grass cover, Good, HSG D		
	7,602	93 V	Weighted Average		
	987		12.98\% Pervious Area		
	6,615		87.02\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entr

Summary for Subcatchment PR-1.9A: TO SWB-2

Runoff = 0.3 cfs @ 12.10 hrs , Volume= 941 cf , Depth> 1.57"

Routed to Pond SWB-2 : SWB-2
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

Area (sf)	CN D	Description
6,695	$61>$	>75\% Grass cover, Good, HSG B
483	$80>$	>75\% Grass cover, Good, HSG D
7,178	62 W	Weighted Average
7,178		100.00\% Pervious Area
Tc Length (min) (feet)	Slope (ft/ft)	Velocity Capacity Description (ft/sec) (cfs)

6.0 Direct Entry, min. eng pract

Summary for Subcatchment PR-2: northeastern locus @ ROW

Runoff =
0.1 cfs @ 12.11 hrs, Volume=

552 cf, Depth> 0.96"
Routed to Reach DP-2 : Grove Street
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

Area (sf)	CN	Description
936	98	Impervious Area
4,916	39	$>75 \%$ Grass cover, Good, HSG A
1,026	80	$>75 \%$ Grass cover, Good, HSG D
6,878	53	Weighted Average
5,942		86.39% Pervious Area
936		13.61% Impervious Area

$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0	Direct Entry, Min. Engineering Practice								
Summary for Subcatchment PR-2.1: southeastern locus @ ROW									
Runoff $=\quad 0.0$ cfs @ 15.14 hrs , Volume= $\quad 158 \mathrm{cf}$, Depth> 0.09"									
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrsType III $24-\mathrm{hr} 10-\mathrm{Yr} 24 \mathrm{Hr}$ Rainfall $=5.22$ "									

Direct Entry, Min. Engineering Practice

Summary for Subcatchment PR-3: south of BVW B

Runoff $=0.0$ cfs @ 16.94 hrs, Volume=
87 cf, Depth> 0.04"
Routed to Reach DP-3 : Ex. Wetland (seies B)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

| | Area (sf) | CN |
| ---: | ---: | :--- | Description \quad| 19,666 | 30 | Woods, Good, HSG A |
| ---: | ---: | :--- |
| *,183 | 39 | $>75 \%$ Grass cover, Good, HSG A |
| 64 | 98 | Impervious Area |
| 24,913 | 32 | Weighted Average |
| 24,849 | | 99.74% Pervious Area |
| 64 | | 0.26% Impervious Area |

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ |
| ---: | ---: | ---: | :--- | | Capacity |
| ---: |
| (cfs) |\quad Description | Direct Entry, |
| :--- |

Summary for Subcatchment PR-3.1: north of BVW B

Runoff $=0.0$ cfs @ 14.86 hrs, Volume $=\quad 399 \mathrm{cf}$, Depth> 0.11" Routed to Reach DP-3 : Ex. Wetland (seies B)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

Prepared by RJOC	Printed	12/7/2023

	Area (sf)	CN	Description		
	$\begin{aligned} & \hline 17,728 \\ & 24,872 \end{aligned}$	$\begin{aligned} & 30 \\ & 39 \end{aligned}$	Woods, Good, HSG A $>75 \%$ Grass cover, Good, HSG A		
	$\begin{aligned} & \hline 42,600 \\ & 42,600 \end{aligned}$	35	Weighted Average 100.00\% Pervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment PR-3.2: south western locus

Runoff $=\quad 0.0$ cfs @ 22.55 hrs, Volume= 27 cf, Depth> 0.01" Routed to Reach DP-3 : Ex. Wetland (seies B)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

Area (sf)	CN	Description			
26,302	30	Woods, Good, HSG A			
26,302		100.00% Pervious Area			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description

13.0103 Total

Summary for Subcatchment PR-3.3: south of BVW B @ entrance

Runoff $=0.0$ cfs @ 12.44 hrs, Volume $=103$ cf, Depth> 0.25"
Routed to Reach DP-3 : Ex. Wetland (seies B)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

	Area (sf)	CN Description			
	5,020	$39>$	>75\% Gras	cover, Go	od, HSG A
5,020		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment PR-3.4: north of BVW B @ entrance

Runoff =
0.0 cfs @ 12.44 hrs, Volume=
235 cf, Depth> 0.25"
Routed to Reach DP-3 : Ex. Wetland (seies B)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

Area (sf)	CN	Description
11,446	39	$>75 \%$ Grass cover, Good, HSG A
11,446		100.00% Pervious Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description \quad Direct Entry

Summary for Subcatchment PR-3.5: to PSDS-1

Runoff $=\quad 7.6$ cfs @ 12.09 hrs, Volume= $\quad 23,739$ cf, Depth> 3.47"
Routed to Pond PSDS-1 : PSDS-1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

Summary for Subcatchment PR-3.5A: to SWB-1
Runoff = 0.0 cfs @ 12.44 hrs, Volume= 171 cf, Depth> 0.25"
Routed to Pond SWB-1 : SWB-1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

Area (sf)	CN	Description
8,341	39	$>75 \%$ Grass cover, Good, HSG A
8,341		100.00% Pervious Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ |
| ---: | ---: | ---: | ---: | | Capacity |
| ---: |
| (cfs) |\quad Description | Direct Entry, min. eng pract |
| :--- |

Summary for Subcatchment PR-3.6: bld 1 roof

Runoff = $2.1 \mathrm{cfs} @ 12.08 \mathrm{hrs}$, Volume= $\quad 7,402 \mathrm{cf}$, Depth> 4.98"
Routed to Pond PSIS-1 : PSIS-1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

Summary for Subcatchment PR-4: southwest corner locus

Runoff $=0.0$ cfs @ 22.54 hrs, Volume $=14 \mathrm{cf}$, Depth> 0.01" Routed to Reach DP-4 : 231 Grove Street

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 10-Yr 24 Hr Rainfall=5.22"

Summary for Reach DP-1: Ex. Wetland (series A)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Reach DP-2: Grove Street

Inflow Area	28,979	3.23\% Impervious,	Inflow Depth	0.29" for 10-Yr 24 Hr event
Inflow	0.1 cfs @	12.11 hrs , Volume=	710 cf	
Outflow	0.1 cfs @	12.11 hrs, Volume=	710 cf,	Atten $=0 \%, L a g=0.0 \mathrm{~min}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Reach DP-3: Ex. Wetland (seies B)

ow	218,588 sf, 37.02\% Impervious,	w Depth > 0.05" for $10-\mathrm{Yr} 24 \mathrm{Hr}$ event
Inflow	0.0 cfs @ 14.86 hrs, Volume=	851 cf
Outflow	0.0 cfs @ 14.86 hrs, Volume=	851 cf, Atten= 0\%, Lag $=0.0 \mathrm{~min}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Reach DP-4: 231 Grove Street

Inflow Area	13,667 sf, 0.00\% Impervious,	Inflow Depth > 0.01" for $10-\mathrm{Yr} 24 \mathrm{Hr}$ event
Inflow	0.0 cfs @ 22.54 hrs, Volume=	14 cf
Outflow	0.0 cfs @ 22.54 hrs, Volume=	$14 \mathrm{cf}, \mathrm{Atten}=0 \%$, Lag $=0.0 \mathrm{~min}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Pond PSDS-1: PSDS-1

Routed to Pond SWB-1 : SWB-1
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev=293.51' @ 14.05 hrs Surf.Area= 4,105 sf Storage= 15,660 cf
Plug-Flow detention time= 307.2 min calculated for 8,628 cf (36% of inflow)
Center-of-Mass det. time= 181.7 min (989.9-808.2)

Volume	Invert	Avail.Storage	Storage Description
\#1A	288.00'	6,666 cf	$46.67^{\prime} \mathrm{W} \times 87.97^{\prime} \mathrm{L} \times 6.75{ }^{\prime} \mathrm{H}$ Field A 27,710 cf Overall $-11,044$ cf Embedded $=16,665$ cf $\times 40.0 \%$ Voids
\#2A	288.75'	11,044 cf	ADS_StormTech MC-4500 b +Capx 100 Inside \#1 Effective Size $=90.4^{\prime \prime} \mathrm{W} \times 60.0^{\prime \prime} \mathrm{H}=>26.46 \mathrm{sf} \times 4.03^{\prime} \mathrm{L}=106.5 \mathrm{cf}$ Overall Size= 100.0"W x 60.0"H x 4.33'L with 0.31 ' Overlap 100 Chambers in 5 Rows Cap Storage $=39.5 \mathrm{cf} \times 2 \times 5$ rows $=395.0 \mathrm{cf}$
		17,710 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Device 2	293.25'	12.0" Vert. Orifice/Grate X 2.00 C= 0.600
			Limited to weir flow at low heads
\#2	Primary	293.25'	24.0" Round Culvert
			$\mathrm{L}=21.6^{\prime} \mathrm{CPP}$, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= 293.25' / 292.00' S=0.0579 '/' Cc= 0.900
			$\mathrm{n}=0.010 \mathrm{PVC}$, smooth interior, Flow Area= 3.14 sf
\#3	Device 4	288.00'	2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Primary	288.00'	2.0" Round Culvert
			$\mathrm{L}=90.0^{\prime}$ CPP, mitered to conform to fill, $\mathrm{Ke}=0.700$
			Inlet / Outlet Invert= 288.00' $/ 286.00^{\prime} \mathrm{S}=0.0222^{\prime} / / \mathrm{Cc}=0.900$
			$\mathrm{n}=0.010 \mathrm{PVC}$, smooth interior, Flow Area= 0.02 sf
Primary OutFlow Max=0.4 cfs @ 14.05 hrs HW=293.51' TW=286.00' (Dynamic Tailwater)			
-2=Culvert (Inlet Controls 0.3 cfs @ 1.4 fps)			
-4=Culvert (Barrel Controls 0.1 cfs @ 4.9 fps)			
	Orifice/G	$\text { Passes } 0 .$	cfs of 0.2 cfs potential flow)

Summary for Pond PSDS-2: PSDS-2

Routed to Pond SWB-2 : SWB-2
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 311.30' @ 12.12 hrs Surf.Area= 1,111 sf Storage= 1,900 cf

Plug-Flow detention time $=100.8 \mathrm{~min}$ calculated for $8,411 \mathrm{cf}$ (97% of inflow)
Center-of-Mass det. time $=81.9 \mathrm{~min}(884.0-802.2)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	308.50'	1,114 cf	$17.75{ }^{\prime} \mathrm{W}$ x 62.58'L x 3.50'H Field A
			3,888 cf Overall - 1,103 cf Embedded $=2,785$ cf $\times 40.0 \%$ Voids
\#2A	$309.00{ }^{\prime}$	1,103 cf	ADS_StormTech SC-740 +Capx 24 Inside \#1
			Effective Size $=44.6$ "W $\times 30.0$ "H $=>6.45 \mathrm{sf} \times 7.12 \mathrm{~L}=45.9 \mathrm{cf}$
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			24 Chambers in 3 Rows

2,217 cf Total Available Storage
Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Device 2	310.50'	12.0" Vert. Orifice/Grate X 2.00 C= 0.600
			Limited to weir flow at low heads
\#2	Primary	310.50'	24.0" Round Culvert
			$\mathrm{L}=4.7{ }^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert=310.50' $310.40^{\prime} \mathrm{S}=0.0213^{\prime} / / \mathrm{Cc}=0.900$
			$\mathrm{n}=0.010 \mathrm{PVC}$, smooth interior, Flow Area= 3.14 sf
\#3	Device 4	308.50'	2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Primary	308.50'	2.0" Round Culvert
			$\mathrm{L}=66.0$ ' CPP, mitered to conform to fill, $\mathrm{Ke}=0.700$
			Inlet / Outlet Invert= 308.50' $306.00{ }^{\text {' }} \mathrm{S}=0.0379$ '/' Cc= 0.900
			$\mathrm{n}=0.010 \mathrm{PVC}$, smooth interior, Flow Area= 0.02 sf

Primary OutFlow Max=2.6 cfs @ 12.12 hrs HW=311.30' TW=304.82' (Dynamic Tailwater)

- 2 =Culvert (Barrel Controls 2.5 cfs @ 3.1 fps)
_1=Orifice/Grate (Passes 2.5 cfs of 4.1 cfs potential flow)
4=Culvert (Barrel Controls 0.1 cfs @ 4.7 fps)
$\ell_{3}=$ Orifice/Grate (Passes 0.1 cfs of 0.2 cfs potential flow)

Summary for Pond PSDS-3: PSDS-3

Inflow Area = 65,612 sf, 79.97\% Impervious, Inflow Depth > 4.19" for 10-Yr 24 Hr event
Inflow $=7.1 \mathrm{cfs}$ @ 12.08 hrs , Volume= $\quad 22,921 \mathrm{cf}$
Outflow = 5.5 cfs @ 12.15 hrs , Volume= $16,100 \mathrm{cf}$, Atten= 23%, Lag= 3.9 min
Primary $=5.5$ cfs @ 12.15 hrs , Volume $=16,100 \mathrm{cf}$
Routed to Pond PSIS-5 : PSIS-5
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 308.14' @ 12.15 hrs Surf.Area= 2,211 sf Storage= $8,563 \mathrm{cf}$
Plug-Flow detention time $=172.0$ min calculated for $16,100 \mathrm{cf}$ (70% of inflow)
Center-of-Mass det. time= $80.9 \mathrm{~min}(865.7-784.8)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	302.25'	3,737 cf	55.75'W x 39.67'L x 6.75'H Field A
			14,927 cf Overall - 5,586 cf Embedded $=9,342$ cf $\times 40.0 \%$ Voids
\#2A	303.00'	$5,586 \mathrm{cf}$	ADS_StormTech MC-4500 b +Capx 48 Inside \#1
			Effective Size=90.4"W x 60.0"H => $26.46 \mathrm{sf} \times 4.03 \mathrm{~L}=106.5 \mathrm{cf}$
			Overall Size= 100.0"W x 60.0"H x 4.33'L with 0.31 ' Overlap
			48 Chambers in 6 Rows
			Cap Storage $=39.5 \mathrm{cf} \times 2 \times 6$ rows $=474.0 \mathrm{cf}$
		9,322 cf	Total Available Storage

Storage Group A created with Chamber Wizard
Device Routing Invert Outlet Devices
$\begin{array}{lllll}\# 1 & \text { Device } 2 & 307.00 & 12.0 " \text { Vert. Orifice/Grate X } 3.00 \quad \mathrm{C}=0.600\end{array}$
Limited to weir flow at low heads
\#2 Primary 307.00' 24.0" Round Culvert
$\mathrm{L}=28.4$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$

Inlet / Outlet Invert= 307.00' / 306.00' S= 0.0352 '/' Cc= 0.900 $\mathrm{n}=0.010$ PVC, smooth interior, Flow Area= 3.14 sf
\#3 Device $4 \quad 302.5^{\prime} \quad$ 2.0" Vert. Orifice/Grate $C=0.600$ Limited to weir flow at low heads
\#4 Primary
302.25' 2.0" Round Culvert
$\mathrm{L}=40.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
Inlet / Outlet Invert= 302.25' / 302.10' S=0.0037 '// Cc= 0.900
$\mathrm{n}=0.010 \mathrm{PVC}$, smooth interior, Flow Area= 0.02 sf

Primary OutFlow Max=5.5 cfs @ 12.15 hrs HW=308.14' TW= -2=Culvert (Inlet Controls 5.3 cfs @ 2.9 fps) $\tau_{1=O r i f i c e / G r a t e ~(P a s s e s ~} 5.3$ cfs of 9.1 cfs potential flow)	(Dynamic Tailwater)
4-Culvert (Barrel Controls 0.1 cfs @ 6.2 fps)	
$L^{-} 3=$ Orifice/Grate (Passes 0.1 cfs of 0.3 cfs potential flow)	

Summary for Pond PSIS-1: PSIS-1

Inflow Area =	17,839 sf,100.00\% Impervious,		pth	4.98" for $10-\mathrm{Yr} 24 \mathrm{Hr}$ event
Inflow	2.1 cfs @	12.08 hrs , Volume=	7,402 cf	
Outflow	0.7 cfs @	12.38 hrs , Volume=	7,403 cf,	Atten= 68\%, Lag= 17.5 min
Discarded =	0.2 cfs @	11.64 hrs , Volume=	6,823 cf	
Primary	0.4 cfs @	12.38 hrs , Volume=	580 cf	

Routed to Pond SWB-1 : SWB-1
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 295.37' @ 12.38 hrs Surf.Area= 1,224 sf Storage= 1,905 cf
Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time= 39.8 min (786.6-746.8)

Volume	Invert	Avail.Storage	Storage Description
\#1A	293.00'	1,162 cf	49.00'W x $24.98{ }^{\text {'L }} \times 3.50$ 'H Field A
			4,283 cf Overall - 1,378 cf Embedded $=2,905$ cf $\times 40.0 \%$ Voids
\#2A	293.50'	1,378 cf	ADS_StormTech SC-740 +Capx 30 Inside \#1
			Effective Size $=44.6$ "W $\times 30.0$ "H $=>6.45 \mathrm{sf} \times 7.12 \mathrm{~L}=45.9 \mathrm{cf}$
			Overall Size $=51.0 \mathrm{~W}$ W $\times 30.0$ H $\mathrm{H} \times 7.56$ 'L with $0.44{ }^{\text {' O }}$ Overlap
			30 Chambers in 10 Rows
		2,540 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Discarded	293.00'	$8.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Device 3	295.00'	12.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#3	Primary	295.00'	12.0" Round Culvert
			L=3.7' CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert=295.00' 294.80 ' $\mathrm{S}=0.0541 / / / \mathrm{Cc}=0.900$
			$\mathrm{n}=0.010 \mathrm{PVC}$, smooth interior, Flow Area $=0.79 \mathrm{sf}$

Discarded OutFlow Max=0.2 cfs @ 11.64 hrs HW=293.04' (Free Discharge)

1 ${1=E x f i l t r a t i o n ~(E x f i l t r a t i o n ~ C o n t r o l s ~} 0.2$ cfs)
Primary OutFlow Max=0.4 cfs @ 12.38 hrs HW=295.37' TW=286.00' (Dynamic Tailwater)
$\complement_{3=C u l v e r t ~(I n l e t ~ C o n t r o l s ~} 0.4$ cfs @ 1.6 fps)

Summary for Pond PSIS-2: PSIS-2

 Routed to Pond SWB-2 : SWB-2

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 309.17' @ 12.39 hrs Surf.Area= 2,128 sf Storage= 2,119 cf
Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time= 96.9 min (843.7-746.8)

Volume	Invert	Avail.Storage	Storage Description
\#1A	307.50'	1,514 cf	54.83'W $\times 38.80{ }^{\prime} \mathrm{L} \times 2.33$ 'H Field A
			4,964 cf Overall - 1,179 cf Embedded $=3,785$ cf $\times 40.0 \%$ Voids
\#2A	308.00'	1,179 cf	ADS_StormTech SC-310 +Capx 80 Inside \#1
			Effective Size $=28.9$ "W $\times 16.0$ H $\mathrm{H}=>2.07 \mathrm{sf} \times 7.12 \mathrm{~L}=14.7 \mathrm{cf}$
			Overall Size $=34.0$ 'W x 16.0"H x 7.56'L with 0.44 ' Overlap
			80 Chambers in 16 Rows
2,693 cf Total Available Storage			
Storage Group A created with Chamber Wizard			
Device	Routing	Invert Outlet Devices	
\#1	Discarded	$307.50{ }^{\prime} 2.410$	2.410 in/hr Exfiltration over Surface area
\#2	Device 3	308.83' 6.	Vert. Orifice/Grate X 8.00 C= 0.600
			ed to weir flow at low heads
\#3	Primary	$308.83{ }^{\prime} \begin{array}{ll}18 \\ & \mathrm{~L}= \\ & \text { In } \\ \\ \mathrm{n}=\end{array}$	" Round Culvert
			3.5' CPP, projecting, no headwall, $\mathrm{Ke=} 0.900$
			/ Outlet Invert= 308.83' / 307.00' S=0.1356 '/' Cc= 0.900
			.010 PVC, smooth interior, Flow Area= 1.77 sf

Discarded OutFlow Max=0.1 cfs @ 11.14 hrs HW=307.53' (Free Discharge)
—1=Exfiltration (Exfiltration Controls 0.1 cfs)
Primary OutFlow Max=0.5 cfs @ 12.39 hrs HW=309.17' TW=305.40' (Dynamic Tailwater)
$\left\llcorner_{3}=\right.$ Culvert (Inlet Controls 0.5 cfs @ 1.6 fps)

Prepared by RJOC	Printed $12 / 7 / 2023$
HydroCAD® 10.10-6a $\sin 04881$ © 2020 HydroCAD Software Solutions LLC	Page 47

Summary for Pond PSIS-3: PSIS-3

Inflow Area =	107,379 sf, 82.73\% Impervious, Inflow Depth > 3.99" for 10-Yr 24 Hr event			
Inflow	11.2 cfs @	12.09 hrs , Volume=	35,699 cf	
Outflow	1.0 cfs @	11.65 hrs, Volume=	35,703 cf,	Atten $=91 \%, \quad$ aga $=0.0 \mathrm{~min}$
Discarded =	1.0 cfs @	11.65 hrs, Volume=	35,703 cf	
Primary =	0.0 cfs @	0.00 hrs, Volume=	0 cf	

Routed to Reach DP-1 : Ex. Wetland (series A)
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev=281.02' @ 12.96 hrs Surf.Area= 5,421 sf Storage= 13,014 cf
Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time= 94.4 min (886.1-791.7)

Volume	Invert	Avail.Storage Storage Description	
\#1	277.50'	7,335 cf	37.00'W $\times 146.50^{\prime} \mathrm{L} \times 6.00^{\prime} \mathrm{H}$ Prismatoid
			32,523 cf Overall - 14,186 cf Embedded $=18,337$ cf $\times 40.0 \%$ Voids
\#2	$278.00{ }^{\prime}$	14,186 cf	60.0" Round Pipe Storage $\times 5$ Inside \#1
			L= 144.5'
		21,521 cf Total Available Storage	
Device	Routing	Invert Out	et Devices
\#1	Discarded	277.50' 8.2	$0 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Device 3	282.0012.	" Vert. Orifice/Grate X 2.00 C= 0.600
			ted to weir flow at low heads
\#3	Primary	282.00' 18.	" Round Culvert
			2.0' CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			/ Outlet Invert= 282.00' 276.00 ' S=0.0652 '/' Cc= 0.900
			.010 PVC, smooth interior, Flow Area= 1.77 sf

Discarded OutFlow Max=1.0 cfs @ 11.65 hrs HW=277.57' (Free Discharge)
—1=Exfiltration (Exfiltration Controls 1.0 cfs)
Primary OutFlow Max=0.0 cfs @ 0.00 hrs HW=277.50' TW=0.00' (Dynamic Tailwater)
-3=Culvert (Controls 0.0 cfs)
$L_{2=O r i f i c e / G r a t e ~(~ C o n t r o l s ~} 0.0 \mathrm{cfs}$)

Summary for Pond PSIS-4: PSIS-4

Inflow Area = 89,965 sf, 79.66\% Impervious, Inflow Depth > 4.08" for 10-Yr 24 Hr event Inflow = 9.5 cfs @ 12.08 hrs , Volume= $30,625 \mathrm{cf}$ Outflow = $0.3 \mathrm{cfs} @ 10.34 \mathrm{hrs}$, Volume= $14,959 \mathrm{cf}$, Atten= 97%, Lag= 0.0 min Discarded $=\quad 0.3 \mathrm{cfs}$ @ 10.34 hrs , Volume= $14,959 \mathrm{cf}$ Primary $=0.0 \mathrm{cfs}$ @ 0.00 hrs , Volume= 0 cf Routed to Reach DP-1 : Ex. Wetland (series A)

Routing by Dyn-Stor-Ind method, Time Span $=0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Prepared by RJOC	Printed $12 / 7 / 2023$
HydroCAD® 10.10-6a $\sin 04881$ © 2020 HydroCAD Software Solutions LLC	Page 48

Peak Elev= 282.57' @ 16.42 hrs Surf.Area= 4,560 sf Storage= 18,653 cf
Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time $=158.0 \mathrm{~min}$ (946.7-788.7)

Discarded OutFlow Max=0.3 cfs @ $10.34 \mathrm{hrs} \mathrm{HW}=277.1^{\prime} \quad$ (Free Discharge)
(1=Exfiltration (Exfiltration Controls 0.3 cfs)
Primary OutFlow Max=0.0 cfs @ 0.00 hrs HW=277.00' TW=0.00' (Dynamic Tailwater)
$L_{3=C u l v e r t ~(~ C o n t r o l s ~} 0.0 \mathrm{cfs}$)
$\mathcal{L}_{\mathbf{2}=\text { Orifice/Grate (Controls } 0.0 \mathrm{cfs} \text {) }}$

Summary for Pond PSIS-5: PSIS-5

Inflow Area = $\quad 128,432$ sf, 66.34% Impervious, Inflow Depth > 3.01" for $10-\mathrm{Yr} 24 \mathrm{Hr}$ event
Inflow = $9.8 \mathrm{cfs} @ 12.13 \mathrm{hrs}$, Volume= $32,236 \mathrm{cf}$

Outflow = $1.8 \mathrm{cfs} @ 12.64 \mathrm{hrs}$, Volume= $22,497 \mathrm{cf}$, Atten= 81%, Lag= 30.6 min
Discarded $=\quad 0.2 \mathrm{cfs} @ 11.24 \mathrm{hrs}$, Volume $=12,980 \mathrm{cf}$
Primary = 1.6 cfs @ 12.64 hrs, Volume= $9,516 \mathrm{cf}$ Routed to Reach DP-1 : Ex. Wetland (series A)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev=289.05' @ 12.64 hrs Surf.Area= 4,320 sf Storage= 12,279 cf

Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time= $83.7 \mathrm{~min}(926.1-842.5)$

Volume	Invert	Avail.Storage	Storage Description
\#1	285.50'	11,585 cf	60.0" Round Pipe Storage $\times 5$ Inside \#2 $\mathrm{L}=118.0^{\prime}$
\#2	285.00'	5,734 cf	36.00'W $\times 120.00^{\prime} \mathrm{L} \times 6.00^{\prime} \mathrm{H}$ Prismatoid 25,920 cf Overall $-11,585$ cf Embedded $=14,335$ cf $\times 40.0 \%$ Voids
		17,319 cf	Total Available Storage

Device	Routing	Invert	Outlet Devices	
\#1	Discarded	285.00'	$2.410 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area	
\#2	Device 3	288.50'	24.0" Vert. Orifice/Grate X 5.00 C= 0.600	
			Limited to weir flow at low heads	
\#3	Primary	288.50'	30.0" Round Culvert	
			$\mathrm{L}=19.1{ }^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$	
			Inlet / Outlet Invert= 288.50' / 287.50' S=0.0524 '/' C	
			$\mathrm{n}=0.010 \mathrm{PVC}$, smooth interior, Flow Area= 4.91 sf	
Discarded OutFlow Max=0.2 cfs @ 11.24 hrs HW=285.06' (Free Discharge) L-1=Exfiltration (Exfiltration Controls 0.2 cfs)				
Primary OutFlow Max=1.6 cfs @ 12.64 hrs HW=289.05' TW=0.00' (Dynamic Tailwater) $\leftarrow_{3=C u l v e r t ~(I n l e t ~ C o n t r o l s ~} 1.6 \mathrm{cfs}$ @ 2.0 fps) 2=Orifice/Grate (Passes 1.6 cfs of 8.9 cfs potential flow)				

Summary for Pond PSIS-6: PSIS-6

Inflow Area =	40,46	86\% Imperviou	pth	$3.18{ }^{\prime \prime}$ for $10-\mathrm{Yr} 24 \mathrm{Hr}$ event
Inflow	3.5 cfs @	12.09 hrs, Volume=	10,713 cf	
Outflow	0.4 cfs @	11.74 hrs, Volume=	10,717 cf,	Atten= 89%, Lag $=0.0 \mathrm{~min}$
Discarded =	0.4 cfs @	11.74 hrs , Volume=	10,717 cf	
Primary	0.0 cfs @	0.00 hrs , Volume=	0 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 280.16' @ 12.84 hrs Surf.Area= 2,039 sf Storage= 3,685 cf
Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time= 71.4 min (887.9-816.6)

Volume	Invert	Avail.Storage	Storage Description
\#1A	277.50'	$3,550 \mathrm{cf}$	73.92'W x 27.59'L x 6.75'H Field A
			13,767 cf Overall - 4,892 cf Embedded $=8,875$ cf $\times 40.0 \%$ Voids
\#2A	278.25'	4,892 cf	ADS_StormTech MC-4500 b +Capx 40 Inside \#1
			Effective Size $=90.4$ "W x 60.0"H $=>26.46 \mathrm{sf} \times 4.03 \mathrm{~L}=106.5 \mathrm{cf}$
			Overall Size $=100.0$ " $\mathrm{W} \times 60.0 \mathrm{H} \times 4.33$ 'L with 0.31 ' Overlap
			40 Chambers in 8 Rows
			Cap Storage $=39.5 \mathrm{cf} \times 2 \times 8$ rows $=632.0 \mathrm{cf}$
		8,442 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Discarded OutFlow Max=0.4 cfs @ 11.74 hrs HW=277.58' (Free Discharge)

1 ${1=E x f i l t r a t i o n ~(E x f i l t r a t i o n ~ C o n t r o l s ~}^{0.4}$ cfs)
Primary OutFlow Max=0.0 cfs @ 0.00 hrs HW=277.50' TW=279.00' (Dynamic Tailwater)
$\leftarrow_{3=C u l v e r t ~(~ C o n t r o l s ~} 0.0 \mathrm{cfs}$)
$L_{2=O r i f i c e / G r a t e ~(C o n t r o l s ~} 0.0 \mathrm{cfs}$)

Summary for Pond PSIS-7: PSIS-7

Inflow Area =	31,42	61.99\% Impervious,	Inflow Depth >	2.82" for $10-\mathrm{Yr} 24 \mathrm{Hr}$ event
Inflow	2.2 cfs @	12.09 hrs , Volume=	7,390 cf	
Outflow	0.6 cfs @	12.46 hrs, Volume=	6,581 cf,	Atten= 72\%, Lag= 22.3 min
Discarded $=$	0.1 cfs @	11.28 hrs , Volume=	5,039 cf	
Primary	0.5 cfs @	12.46 hrs, Volume=	$1,542 \mathrm{cf}$	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev=290.41' @ 12.46 hrs Surf.Area= 1,616 sf Storage= $2,565 \mathrm{cf}$
Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time= 122.2 min (921.8-799.6)

Volume	Invert	Avail.Storage	Storage Description
\#1A	288.00'	1,528 cf	26.25'W x 61.58'L x 3.50'H Field A
			5,657 cf Overall - 1,838 cf Embedded $=3,820$ cf $\times 40.0 \%$ Voids
\#2A	288.50'	1,838 cf	ADS_StormTech SC-740 +Capx 40 Inside \#1
			Effective Size $=44.6$ "W $\times 30.0$ 'H $=>6.45 \mathrm{sf} \times 7.12 \mathrm{~L}$ = 45.9 cf
			Overall Size $=51.0{ }^{\prime \prime} \mathrm{W} \times 30.0{ }^{\prime \prime} \mathrm{H} \times 7.56$ 'L with 0.44 ' Overlap
			40 Chambers in 5 Rows
		3,366 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Discarded	288.00'	$2.410 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Device 3	290.00'	12.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#3	Primary	290.00'	12.0" Round Culvert
			$\mathrm{L}=29.0$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert=290.00' / 288.00' S=0.0690 '/' Cc= 0.900
			$\mathrm{n}=0.010$ PVC, smooth interior, Flow Area= 0.79 sf

Discarded OutFlow Max=0.1 cfs @ 11.28 hrs HW=288.04' (Free Discharge)
L1=Exfiltration (Exfiltration Controls 0.1 cfs)
Primary OutFlow Max=0.5 cfs @ 12.46 hrs HW=290.41' TW=279.33' (Dynamic Tailwater)
$廿_{3=C u l v e r t ~(I n l e t ~ C o n t r o l s ~}^{0.5} \mathrm{cfs}$ @ 1.7 fps)
L2 $_{2}=\mathbf{O r i f i c e / G r a t e ~ (P a s s e s ~} 0.5 \mathrm{cfs}$ of 0.7 cfs potential flow)

Prepared by RJOC	Printed $12 / 7 / 2023$
HydroCAD® 10.10-6a $\sin 04881$ © 2020 HydroCAD Software Solutions LLC	Page 51

Summary for Pond PSIS-8: PSIS-8

 Routed to Reach DP-1 : Ex. Wetland (series A)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 276.14' @ 12.76 hrs Surf.Area= 1,108 sf Storage= 3,066 cf

Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time= 107.8 min (892.6-784.8)

Volume	Invert	Avail.Storage	Storage Description
\#1A	272.00'	1,611 cf	22.75'W x 48.72'L x 5.50'H Field A
			6,096 cf Overall - 2,069 cf Embedded $=4,028$ cf $\times 40.0 \%$ Voids
\#2A	272.75'	2,069 cf	ADS_StormTech MC-3500 d +Capx 18 Inside \#1
			Effective Size $=70.4$ "W $\times 45.0$ " $\mathrm{H}=>15.33 \mathrm{sf} \times 7.17 \mathrm{~L}=110.0 \mathrm{cf}$
			Overall Size $=77.0^{\prime \prime} \mathrm{W} \times 45.0{ }^{\prime \prime} \mathrm{H} \times 7.50^{\prime} \mathrm{L}$ with 0.33^{\prime} Overlap
			18 Chambers in 3 Rows
			Cap Storage $=14.9 \mathrm{cf} \times 2 \times 3$ rows $=89.4 \mathrm{cf}$

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Discarded	272.00'	$8.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Device 3	276.00'	6.0" Vert. Orifice/Grate X 2.00 C= 0.600
			Limited to weir flow at low heads
\#3	Primary	276.00'	12.0" Round Culvert
			$\mathrm{L}=5.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= 276.00' / 275.30' S=0.1400 '/' Cc= 0.900
			$\mathrm{n}=0.010 \mathrm{PVC}$, smooth interior, Flow Area $=0.79 \mathrm{sf}$

Discarded OutFlow Max=0.2 cfs @ 11.55 hrs HW=272.06' (Free Discharge)
L1=Exfiltration (Exfiltration Controls 0.2 cfs)
Primary OutFlow Max=0.1 cfs @ 12.76 hrs HW=276.14' TW=0.00' (Dynamic Tailwater)
$\complement_{3=C u l v e r t ~(I n l e t ~ C o n t r o l s ~} 0.1$ cfs @ 1.0 fps)
$L_{2}=$ Orifice/Grate (Passes 0.1 cfs of 0.1 cfs potential flow)

Summary for Pond SWB-1: SWB-1

Inflow Area =	108,307	74.66\% Impervious	epth >	1.04" for 10-Yr 24 Hr event
Inflow	0.5 cfs @	12.38 hrs , Volume=	9,379 cf	
Outflow	0.5 cfs @	12.43 hrs , Volume=	9,379 cf,	Atten= 4\%, Lag= 3.1 min
Discarded =	0.5 cfs @	12.43 hrs , Volume=	9,379 cf	
Primary	0.0 cfs @	0.00 hrs , Volume=	0 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev=286.00' @ 12.43 hrs Surf.Area= 2,701 sf Storage $=6$ cf
Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time $=0.0 \mathrm{~min}$ (975.1 - 975.1)

Volume	Invert Avail.Storage		Storage Description		
\#1	286.00'	15,124 cf	Custom Stage	(Irregular)L	ow (Recalc)
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
286.00	2,700	234.0	0	0	2,700
288.00	3,710	309.0	6,383	6,383	5,986
290.00	5,066	373.0	8,741	15,124	9,526

Device	Routing	Invert	Outlet Devices
\#1	Discarded	286.00'	$8.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Primary	289.50'	20.0' long x 10.0' breadth Broad-Crested Rectangular Weir Head (feet) $0.20 \begin{array}{lllllll}0.40 & 0.60 & 0.80 & 1.00 & 1.20 & 1.40 & 1.60\end{array}$
			Coef. (English) 2.492 .562 .702 .692 .682 .692 .672 .64

Discarded OutFlow Max=0.5 cfs @ 12.43 hrs HW=286.00' (Free Discharge)
—1=Exfiltration (Exfiltration Controls 0.5 cfs)
Primary OutFlow Max=0.0 cfs @ 0.00 hrs HW=286.00' TW=0.00' (Dynamic Tailwater)
$L_{2=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~} 0.0 \mathrm{cfs}$)

Summary for Pond SWB-2: SWB-2

Inflow Area =	51,98	74.23\% Impervious,	Inflow Depth >	2.38" for $10-\mathrm{Yr} 24 \mathrm{Hr}$ event
Inflow	2.9 cfs @	12.12 hrs , Volume=	10,289 cf	
Outflow	1.6 cfs @	12.39 hrs , Volume=	7,288 cf,	Atten= 44\%, Lag= 16.7 min
Primary	1.6 cfs @	12.39 hrs , Volume=	7,288 cf	

Routed to Reach DP-1 : Ex. Wetland (series A)
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 305.40' @ 12.39 hrs Surf.Area= 2,932 sf Storage= 3,258 cf
Plug-Flow detention time= 191.6 min calculated for 7,288 cf (71% of inflow)
Center-of-Mass det. time= $72.4 \min (943.5-871.1)$

Summary for Pond SWB-3: SWB-3

Inflow Area	77,090 sf, 58.79\% Impervious, Inflow Depth > 0.45" for 10-Yr 24 Hr event			
Inflow	0.6 cfs @	12.44 hrs , Volume=	2,879 cf	
Outflow	0.0 cfs @	0.00 hrs , Volume=	0 cf,	Atten= 100\%, Lag= 0.0 min
Primary	0.0 cfs @	0.00 hrs , Volume=	0 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev=279.91' @ 24.00 hrs Surf.Area= 3,363 sf Storage= 2,879 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow)
Center-of-Mass det. time= (not calculated: no outflow)

Primary OutFlow Max=0.0 cfs @ 0.00 hrs HW=279.00' TW=0.00' (Dynamic Tailwater)

- $1=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~\left(~ C o n t r o l s ~^{0.0} \mathrm{cfs}\right.$)

Summary for Subcatchment PR-1: northeastern locus

Runoff $=\quad 10.4 \mathrm{cfs} @ 12.19 \mathrm{hrs}$ @ Volume=
Routed to Reach DP-1: Ex. Wetland (series A)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr 24 Hr Rainfall=6.39"

$12.6 \quad 603$ Total

Summary for Subcatchment PR-1.1: south of BVW A

Runoff $=1.9$ cfs @ 12.10 hrs, Volume= Routed to Reach DP-1 : Ex. Wetland (series A)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Yr 24 Hr Rainfall=6.39"

Area (sf)	CN	Description
21,801	77	Woods, Good, HSG D
120	39	$>75 \%$ Grass cover, Good, HSG A
1,471	80	$>75 \%$ Grass cover, Good, HSG D
20,582	30	Woods, Good, HSG A
43,974	55	Weighted Average
43,974		100.00% Pervious Area

| Tc
 (min) | Length
 (feet) |
| ---: | ---: | | Slope |
| ---: |
| $(\mathrm{ft} / \mathrm{ft})$ | | Velocity |
| ---: |
| $(\mathrm{ft} / \mathrm{sec})$ | | Capacity |
| ---: |
| (cfs) |\quad Description | Direct Entry, |
| :--- |

Summary for Subcatchment PR-1.10: TO PSIS-3

Runoff $=\quad 2.7$ cfs @ 12.08 hrs , Volume $=\quad 8,847 \mathrm{cf}$, Depth> 5.11"
Routed to Pond PSIS-3 : PSIS-3
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 25-Yr 24 Hr Rainfall=6.39"

Summary for Subcatchment PR-1.11: TO PSDS-2

Runoff $=\quad 3.6$ cfs @ 12.09 hrs, Volume $=\quad 11,319$ cf, Depth> 4.78"
Routed to Pond PSDS-2 : PSDS-2
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 25-Yr 24 Hr Rainfall=6.39"

Area (sf)	CN	Description
$*$	22,222	98
Impervious Area		
5,404	39	$>75 \%$ Grass cover, Good, HSG A
812	80	$>75 \%$ Grass cover, Good, HSG D
28,438	86	Weighted Average
6,216		21.86% Pervious Area
22,222		78.14% Impervious Area

Tc	Length (min)	(feet)	Slope $(\mathrm{ft} / \mathrm{ft})$
Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)	Description	

6.0

Direct Entry, min. eng pract

Summary for Subcatchment PR-1.12: TO PSIS-2

Runoff $=2.4$ cfs @ 12.08 hrs, Volume=
8,385 cf, Depth> 6.15"
Routed to Pond PSIS-2 : PSIS-2
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr 24 Hr Rainfall=6.39"

	Area (sf)	CN	Description
$*$	16,369	98	Roof Area
16,369		100.00% Impervious Area	

Direct Entry, min. eng pract

Summary for Subcatchment PR-1.13: TO PSIS-4

Runoff $=\quad 12.0$ cfs @ 12.08 hrs, Volume= 39,147 cf, Depth> 5.22"
Routed to Pond PSIS-4 : PSIS-4
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr 24 Hr Rainfall=6.39"

	Area (sf)	CN	Description
53,830 98 Impervious Area * 18,296 61 >75\% Grass cover, Good, HSG B			
	98	Roof Area	
	90	Weighted Average	
18,296		20.34\% Pervious Area	
71,669		79.66% Impervious Area	

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ |
| ---: | ---: | ---: | :--- | | Capacity |
| ---: |
| (cfs) |\quad Description | |
| :--- |
| 6.0 |

Summary for Subcatchment PR-1.14: TO PSIS-5

Runoff = 7.0 cfs @ 12.09 hrs, Volume= 21,623 cf, Depth> 4.13" Routed to Pond PSIS-5 : PSIS-5

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr $25-\mathrm{Yr} 24 \mathrm{Hr}$ Rainfall=6.39"

Prepared by RJOC	Printed 12/7/2023
	Pag

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment PR-1.14A: TO PSDS-3

Runoff $=8.9$ cfs @ 12.08 hrs, Volume= 29,168 cf, Depth> 5.33"

Routed to Pond PSDS-3 : PSDS-3
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr 24 Hr Rainfall=6.39"

	Area (sf)	CN	Description
*	13,139	61	$>75 \%$ Grass cover, Good, HSG B
*	34,839	98	Roof Area
34,634	98	Impervious Area	
65,612	91	Weighted Average	
13,139		20.03\% Pervious Area	
	52,473		79.97% Impervious Area

Tc	Length (min)	Sloet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)
Capacity (cfs)				

Summary for Subcatchment PR-1.15: clubhouse roof

Runoff $=\quad 1.1$ cfs @ 12.08 hrs, Volume= $\quad 4,056$ cf, Depth> 6.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr 24 Hr Rainfall=6.39"

| | Area (sf) | CN |
| ---: | ---: | :--- | Description | * |
| :--- |
| 7,918 |
| 7,918 |

| Tc
 (min) | Length
 (feet) |
| ---: | ---: | | Slope |
| ---: |
| $(\mathrm{ft} / \mathrm{ft})$ | | Velocity |
| ---: |
| $(\mathrm{ft} / \mathrm{sec})$ | | Capacity |
| ---: |
| (cfs) |\quad Description | Direct Entry, min. eng pract |
| :--- |

Summary for Subcatchment PR-1.2: northern locus @ prop line

Runoff $=\quad 2.7$ cfs @ 12.10 hrs , Volume= 8,721 cf, Depth> 2.36"
Routed to Reach DP-1 : Ex. Wetland (series A)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 25-Yr 24 Hr Rainfall=6.39"

Summary for Subcatchment PR-1.3: SE of BVW A

Runoff $=\quad 2.5 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume= $\quad 7,665 \mathrm{cf}$, Depth> 3.41"
Routed to Reach DP-1 : Ex. Wetland (series A)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr $25-\mathrm{Yr} 24 \mathrm{Hr}$ Rainfall=6.39"

	Area (sf)	CN	Description		
	9,167	61	>75\% Grass cover, Good, HSG B		
	17,150	80	>75\% Grass cover, Good, HSG D		
	649	77 W	Woods, Good, HSG D		
	26,966	73	Weighted Average		
	26,966		100.00\% P	ervious Are	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{rr} c & \begin{array}{r} \text { Length } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	$\underset{(\mathrm{ft} / \mathrm{ft})}{\text { Slope }}$	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment PR-1.4: TO PSIS-8

Runoff $=\quad 3.2$ cfs @ 12.08 hrs, Volume= 10,553 cf, Depth> 5.33"
Routed to Pond PSIS-8 : PSIS-8
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr 24 Hr Rainfall=6.39"

Summary for Subcatchment PR-1.5: TO PSIS-3

Runoff = 7.7 cfs @ 12.08 hrs , Volume= $24,839 \mathrm{cf}$, Depth> 5.11"
Routed to Pond PSIS-3 : PSIS-3
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 25-Yr 24 Hr Rainfall=6.39"

	Area (sf)	CN	Description		
*	32,702	98	Impervious Area		
	9,258	39	>75\% Grass cover, Good, HSG A		
*	16,379	98	Roof Area		
	58,339	89	Weighted Average		
	9,258		15.87\% Pervious Area		
	49,081		84.13\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description

6.0

Direct Entry, min. eng pract

Summary for Subcatchment PR-1.6: TO PSIS-6

Runoff $=\quad 4.6$ cfs @ 12.09 hrs, Volume $=\quad 14,285$ cf, Depth> 4.24"
Routed to Pond PSIS-6 : PSIS-6
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr $25-\mathrm{Yr} 24 \mathrm{Hr}$ Rainfall=6.39"

Prepared by RJOC	Printed$12 / 7 / 2023$ HydroCAD® 10.10-6a $\mathrm{s} / \mathrm{n} 04881$ © 2020 HydroCAD Software Solutions LLC $\mathbf{P a g e} 60$

Area (sf)	CN	Description
25,841	98	Impervious Area
4,090	80	$>75 \%$ Grass cover, Good, HSG D
10,533	39	$>75 \%$ Grass cover, Good, HSG A
40,464	81	Weighted Average
14,623		36.14% Pervious Area
25,841		63.86% Impervious Area

Summary for Subcatchment PR-1.6A: TO SWB-3

Runoff = 0.6 cfs @ 12.09 hrs, Volume= 1,792 cf, Depth> 4.13"
Routed to Pond SWB-3 : SWB-3
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 25-Yr 24 Hr Rainfall=6.39"

	Area (sf)	CN Description			
	5,205	80	75\% Gras	cover, Go	od, HSG D
5,205		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{r} \text { Length } \\ \text { (feet) } \end{array}$	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description

Summary for Subcatchment PR-1.7: TO PSIS-3

Runoff =
$=\quad 2.7$ cfs @ 12.08 hrs, Volume=
8,603 cf, Depth> 5.00"
Routed to Pond PSIS-3 : PSIS-3
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr 24 Hr Rainfall=6.39"

Summary for Subcatchment PR-1.8: clubhouse amenity area

Runoff $=\quad 0.9 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume= $\quad 3,019 \mathrm{cf}$, Depth> 2.36"

Routed to Pond PSIS-7 : PSIS-7
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr 24 Hr Rainfall=6.39"

Summary for Subcatchment PR-1.8A: TO PSIS-7

Runoff $=\quad 0.9$ cfs @ 12.09 hrs , Volume= 2,802 cf, Depth> 4.13"
Routed to Pond PSIS-7 : PSIS-7
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 25-Yr 24 Hr Rainfall=6.39"

	Area (sf)	CN	Description		
*	5,632	98	Impervious Area		
	2,508	39	>75\% Grass cover, Good, HSG A		
	8,140	80	Weighted Average		
	2,508		30.81\% Pervious Area		
	5,632		69.19\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description

Summary for Subcatchment PR-1.9: TO PSIS-3

Runoff $=\quad 1.1$ cfs @ 12.08 hrs , Volume= $\quad 3,524 \mathrm{cf}$, Depth> 5.56"
Routed to Pond PSIS-3 : PSIS-3
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr 24 Hr Rainfall=6.39"

Summary for Subcatchment PR-1.9A: TO SWB-2

Runoff = 0.4 cfs @ 12.09 hrs, Volume $=\quad 1,411 \mathrm{cf}$, Depth> 2.36"
Routed to Pond SWB-2 : SWB-2
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 25-Yr 24 Hr Rainfall=6.39"

Area (sf)	CN D	Description
6,695	$61>$	>75\% Grass cover, Good, HSG B
483	$80>$	>75\% Grass cover, Good, HSG D
7,178	62 W	Weighted Average
7,178		100.00\% Pervious Area
Tc Length (min) (feet)	Slope (ft/ft)	Velocity Capacity Description (ft/sec) (cfs)

6.0 Direct Entry, min. eng pract

Summary for Subcatchment PR-2: northeastern locus @ ROW

Runoff = $=\quad 0.3 \mathrm{cfs} @ 12.10 \mathrm{hrs}$, Volume=

904 cf, Depth> 1.58"
Routed to Reach DP-2 : Grove Street
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr 24 Hr Rainfall=6.39"

Area (sf)	CN	Description
936	98	Impervious Area
4,916	39	$>75 \%$ Grass cover, Good, HSG A
1,026	80	$>75 \%$ Grass cover, Good, HSG D
6,878	53	Weighted Average
5,942		86.39% Pervious Area
936		13.61% Impervious Area

Direct Entry, Min. Engineering Practice

Summary for Subcatchment PR-3: south of BVW B

Runoff $=0.0$ cfs @ 13.74 hrs, Volume=
405 cf, Depth> 0.19"
Routed to Reach DP-3 : Ex. Wetland (seies B)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Type III 24-hr 25-Yr 24 Hr Rainfall=6.39"

| | Area (sf) | CN |
| ---: | ---: | :--- | Description \quad| 19,666 | 30 | Woods, Good, HSG A |
| ---: | ---: | :--- |
| * | 583 | 39 |
| $>75 \%$ Grass cover, Good, HSG A | | |
| 64 | 98 | Impervious Area |
| 24,913 | 32 | Weighted Average |
| 24,849 | | 99.74% Pervious Area |
| 64 | | 0.26% Impervious Area |

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ |
| ---: | ---: | ---: | :--- | | Capacity |
| ---: |
| (cfs) |\quad Description | Direct Entry, |
| :--- |

Summary for Subcatchment PR-3.1: north of BVW B

Runoff $=\quad 0.1 \mathrm{cfs} @ 12.42 \mathrm{hrs}$, Volume= $\quad 1,192 \mathrm{cf}$, Depth> $0.34{ }^{\prime \prime}$ Routed to Reach DP-3 : Ex. Wetland (seies B)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr 24 Hr Rainfall=6.39"

Area (sf)	CN	Description
17,728	30	Woods, Good, HSG A
24,872	39	$>75 \%$ Grass cover, Good, HSG A
42,600	35	Weighted Average
42,600		100.00% Pervious Area
Tc	Length	Slope (ft/ft)
Velocity (ft/sec)	Capacity (min) (cfs)	
6.0		Description

Summary for Subcatchment PR-3.2: south western locus

Runoff $=0.0$ cfs @ 15.15 hrs, Volume= 257 cf, Depth> 0.12" Routed to Reach DP-3 : Ex. Wetland (seies B)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr $25-\mathrm{Yr} 24 \mathrm{Hr}$ Rainfall=6.39"

Area (sf)	CN	Description			
26,302	30	Woods, Good, HSG A			
26,302		100.00% Pervious Area			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description

13.0103 Total

Summary for Subcatchment PR-3.3: south of BVW B @ entrance

Runoff $=0.0$ cfs @ 12.30 hrs, Volume $=\quad 235$ cf, Depth> 0.56"
Routed to Reach DP-3 : Ex. Wetland (seies B)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr 24 Hr Rainfall=6.39"

Summary for Subcatchment PR-3.4: north of BVW B @ entrance

Runoff =
0.1 cfs @ 12.30 hrs, Volume=
535 cf, Depth> 0.56"
Routed to Reach DP-3 : Ex. Wetland (seies B)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr 24 Hr Rainfall=6.39"

Area (sf)	CN	Description
11,446	39	$>75 \%$ Grass cover, Good, HSG A
11,446		100.00% Pervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs) $)$
6.0			Description	

Summary for Subcatchment PR-3.5: to PSDS-1

Runoff $=\quad 9.9$ cfs @ 12.09 hrs , Volume= $\quad 31,196 \mathrm{cf}$, Depth> 4.56"
Routed to Pond PSDS-1 : PSDS-1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Type III 24-hr $25-\mathrm{Yr} 24 \mathrm{Hr}$ Rainfall=6.39"

Summary for Subcatchment PR-3.5A: to SWB-1
Runoff $=\quad 0.0$ cfs @ 12.30 hrs , Volume= 390 cf , Depth> 0.56"
Routed to Pond SWB-1 : SWB-1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr $25-\mathrm{Yr} 24 \mathrm{Hr}$ Rainfall=6.39"

Area (sf)	CN	Description
8,341	39	$>75 \%$ Grass cover, Good, HSG A
8,341		100.00% Pervious Area

| Tc
 (min) | Length
 (feet) |
| ---: | ---: | | Slope |
| ---: |
| $(\mathrm{ft} / \mathrm{ft})$ | | Velocity |
| ---: |
| $(\mathrm{ft} / \mathrm{sec})$ | | Capacity |
| ---: |
| (cfs) |\quad Description | |
| :--- |
| 6.0 |

Summary for Subcatchment PR-3.6: bld 1 roof

Runoff = 2.6 cfs @ 12.08 hrs, Volume= 9,138 cf, Depth> 6.15"
Routed to Pond PSIS-1 : PSIS-1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 25-Yr 24 Hr Rainfall=6.39"

Summary for Subcatchment PR-4: southwest corner locus

Runoff $=0.0$ cfs @ 15.09 hrs , Volume= $\quad 134 \mathrm{cf}$, Depth> 0.12" Routed to Reach DP-4 : 231 Grove Street

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr 24 Hr Rainfall=6.39"

Summary for Reach DP-1: Ex. Wetland (series A)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Reach DP-2: Grove Street

Inflow Area $=$	$28,979 \mathrm{sf}, \quad 3.23 \%$	Impervious,	Inflow Depth $>$	$0.59 "$	for $25-\mathrm{Yr} 24 \mathrm{Hr}$ event
Inflow	$=$	$0.3 \mathrm{cfs} @$	12.10 hrs, Volume=	$1,431 \mathrm{cf}$	
Outflow	$=$	$0.3 \mathrm{cfs} @ 12.10 \mathrm{hrs}$, Volume=	$1,431 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Reach DP-3: Ex. Wetland (seies B)

| Inflow Area $=$ | 218,588 sf, 37.02% Impervious, | Inflow Depth $>0.14 "$ | for $25-\mathrm{Yr} 24 \mathrm{Hr}$ event |
| :--- | :--- | :--- | :--- | :--- |
| Inflow | $=$ | $0.2 \mathrm{cfs} @ 12.39 \mathrm{hrs}$, Volume= | $2,624 \mathrm{cf}$ |
| Outflow | $=$ | $0.2 \mathrm{cfs} @ 12.39 \mathrm{hrs}$, Volume= | $2,624 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$ |

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Reach DP-4: 231 Grove Street

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Pond PSDS-1: PSDS-1

Routed to Pond SWB-1 : SWB-1
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev=293.96' @ 12.48 hrs Surf.Area= 4,105 sf Storage= 16,419 cf
Plug-Flow detention time= 223.6 min calculated for 15,949 cf (51% of inflow)
Center-of-Mass det. time= 112.8 min (913.3-800.5)

Volume	Invert	Avail.Storage	Storage Description
\#1A	288.00'	6,666 cf	$46.67^{\prime} \mathrm{W} \times 87.97^{\prime} \mathrm{L} \times 6.75$ 'H Field A 27,710 cf Overall $-11,044$ cf Embedded $=16,665$ cf $\times 40.0 \%$ Voids
\#2A	288.75'	11,044 cf	ADS_StormTech MC-4500 b +Capx 100 Inside \#1 Effective Size= $90.4^{4 " W} \times 60.0^{\prime \prime} \mathrm{H}=>26.46 \mathrm{sf} \times 4.03 \mathrm{~L}=106.5 \mathrm{cf}$ Overall Size= 100.0"W x 60.0"H x 4.33'L with 0.31 ' Overlap 100 Chambers in 5 Rows Cap Storage $=39.5 \mathrm{cf} \times 2 \times 5$ rows $=395.0 \mathrm{cf}$
		17,710 c	Total Available Storage

Prepared by RJOC
HydroCAD® 10.10-6a s/n 04881 © 2020 HydroCAD S
Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices		
\#1	Device 2	293.25'	12.0" Vert. Orifice/Grate X 2.00 C= 0.600		
			Limited to weir flow at low heads		
\#2	Primary	293.25'	24.0" Round Culvert		
			$\mathrm{L}=21.6^{\prime} \mathrm{CPP}$, projecting, no headwall, $\mathrm{Ke}=0.900$		
			Inlet / Outlet Invert= 293.25' / 292.00' S=0.0579 '/' Cc= 0.900		
			$\mathrm{n}=0.010$ PVC, smooth interior, Flow Area= 3.14 sf		
\#3	Device 4	288.00'	2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads		
\#4	Primary	288.00'	2.0" Round Culvert		
			$\mathrm{L}=90.0^{\prime}$ CPP, mitered to conform to fill, $\mathrm{Ke}=0.700$		
			Inlet / Outlet Invert= 288.00' 286.00 ' S=0.0222 $/ 1 / \mathrm{Cc}=0.900$		
			$\mathrm{n}=0.010$ PVC, smooth interior, Flow Area= 0.02 sf		
Primary OutFlow Max=2.4 cfs @ $12.48 \mathrm{hrs} \mathrm{HW=293.96'} \mathrm{TW=286.50'} \mathrm{(Dynamic} \mathrm{Tailwater)}$					
-2=Culvert (Inlet Controls 2.3 cfs @ 2.3 fps)					
4=Culvert (Outlet Controls 0.1 cfs @ 4.9 fps)					
$\leftarrow^{-} \mathbf{3}=$ Orifice/Grate (Passes 0.1 cfs of 0.3 cfs potential flow)					

Summary for Pond PSDS-2: PSDS-2

2,217 cf Total Available Storage
Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Device 2	310.50'	12.0" Vert. Orifice/Grate X 2.00 C= 0.600
			Limited to weir flow at low heads
\#2	Primary	310.50'	24.0" Round Culvert
			$\mathrm{L}=4.7{ }^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= 310.50' / 310.40' S=0.0213'/' Cc= 0.900
			$\mathrm{n}=0.010$ PVC, smooth interior, Flow Area= 3.14 sf
\#3	Device 4	308.50'	2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Primary	308.50'	2.0" Round Culvert
			$\mathrm{L}=66.0^{\prime}$ CPP, mitered to conform to fill, $\mathrm{Ke}=0.700$
			Inlet / Outlet Invert= 308.50' / 306.00' S=0.0379 '/' Cc= 0.900
			$\mathrm{n}=0.010 \mathrm{PVC}$, smooth interior, Flow Area= 0.02 sf

Primary OutFlow Max=3.4 cfs @ 12.11 hrs HW=311.45' TW=305.28' (Dynamic Tailwater)
-2 $=$ Culvert (Barrel Controls 3.3 cfs @ 3.3 fps)
-1=Orifice/Grate (Passes 3.3 cfs of 5.1 cfs potential flow)
$4=$ Culvert (Barrel Controls 0.1 cfs @ 4.8 fps)
$\sum_{3}=$ Orifice/Grate (Passes 0.1 cfs of 0.2 cfs potential flow)

Summary for Pond PSDS-3: PSDS-3

Inflow Area = 65,612 sf, 79.97\% Impervious, Inflow Depth > 5.33" for $25-\mathrm{Yr} 24 \mathrm{Hr}$ event
Inflow $=8.9 \mathrm{cfs} @ 12.08 \mathrm{hrs}$, Volume $=\quad 29,168 \mathrm{cf}$
Outflow = 8.4 cfs @ 12.11 hrs , Volume= 22,039 cf, Atten= 6\%, Lag= 1.7 min
Primary $=8.4$ cfs @ 12.11 hrs, Volume= $\quad 22,039 \mathrm{cf}$
Routed to Pond PSIS-5 : PSIS-5
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 308.49' @ 12.11 hrs Surf.Area= 2,211 sf Storage= 8,872 cf
Plug-Flow detention time $=144.2$ min calculated for $22,039 \mathrm{cf}$ (76% of inflow)
Center-of-Mass det. time= 61.0 \min (839.5-778.5)

Volume	Invert	Avail.Storage	Storage Description
\#1A	302.25'	3,737 cf	55.75'W x 39.67'L x 6.75'H Field A
			14,927 cf Overall - 5,586 cf Embedded $=9,342$ cf $\times 40.0 \%$ Voids
\#2A	$303.00{ }^{\prime}$	5,586 cf	ADS_StormTech MC-4500 b +Capx 48 Inside \#1
			Effective Size= 90.4"W x 60.0"H => $26.46 \mathrm{sf} \times 4.03{ }^{\prime} \mathrm{L}=106.5 \mathrm{cf}$
			Overall Size= 100.0"W x 60.0"H x 4.33'L with 0.31' Overlap
			48 Chambers in 6 Rows
			Cap Storage $=39.5 \mathrm{cf} \times 2 \times 6$ rows $=474.0$ cf
		9,322 cf	Total Available Storage

Storage Group A created with Chamber Wizard
Device Routing Invert Outlet Devices
$\begin{array}{lllll}\# 1 & \text { Device } 2 & 307.00 & 12.0 " \text { Vert. Orifice/Grate X } 3.00 \quad \mathrm{C}=0.600\end{array}$
Limited to weir flow at low heads
\#2 Primary 307.00' 24.0" Round Culvert
$\mathrm{L}=28.4$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$

Inlet / Outlet Invert= 307.00' / 306.00' S= 0.0352 '/' Cc= 0.900 $\mathrm{n}=0.010 \mathrm{PVC}$, smooth interior, Flow Area= 3.14 sf
\#3 Device $4 \quad 302.5^{\prime} \quad$ 2.0" Vert. Orifice/Grate $C=0.600$ Limited to weir flow at low heads
\#4 Primary
302.25' 2.0" Round Culvert
$\mathrm{L}=40.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
Inlet / Outlet Invert= 302.25' / 302.10' S=0.0037 '// Cc= 0.900
$\mathrm{n}=0.010 \mathrm{PVC}$, smooth interior, Flow Area= 0.02 sf

Summary for Pond PSIS-1: PSIS-1

Inflow Area =	17,83	\% Imperviou	促	6.15" for $25-\mathrm{Yr} 24 \mathrm{Hr}$ event
Inflow	2.6 cfs @	12.08 hrs , Volume=	9,138 cf	
Outflow	1.2 cfs @	12.23 hrs , Volume=	9,139 cf,	Atten= 52\%, Lag= 9.0 min
Discarded =	0.2 cfs @	11.48 hrs , Volume=	7,761 cf	
Primary	1.0 cfs @	12.23 hrs , Volume=	1,378 cf	

Routed to Pond SWB-1 : SWB-1
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 295.59' @ 12.23 hrs Surf.Area= 1,224 sf Storage= 2,063 cf
Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time $=37.8 \mathrm{~min}$ (781.5-743.7)

Volume	Invert	Avail.Storage	Storage Description
\#1A	293.00'	1,162 cf	49.00'W x 24.98'L x 3.50'H Field A
			4,283 cf Overall - 1,378 cf Embedded = 2,905 cf $\times 40.0 \%$ Voids
\#2A	293.50'	1,378 cf	ADS_StormTech SC-740 +Capx 30 Inside \#1
			Effective Size $=44.6 \mathrm{~W} \times 30.0 \mathrm{H} \mathrm{H}=>6.45 \mathrm{sf} \times 7.12 \mathrm{~L}=45.9 \mathrm{cf}$
			Overall Size $=51.0$ "W $\times 30.0$ "H x 7.56'L with 0.44 ' Overlap
			30 Chambers in 10 Rows
		2,540 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Discarded	293.00'	$8.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Device 3	295.00'	12.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#3	Primary	295.00'	12.0" Round Culvert
			L=3.7' CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert=295.00' 294.80 ' $\mathrm{S}=0.0541 / / / \mathrm{Cc}=0.900$
			$\mathrm{n}=0.010 \mathrm{PVC}$, smooth interior, Flow Area $=0.79 \mathrm{sf}$

Discarded OutFlow Max=0.2 cfs @ 11.48 hrs HW=293.04' (Free Discharge)

1 ${1=E x f i l t r a t i o n ~(E x f i l t r a t i o n ~ C o n t r o l s ~} 0.2$ cfs)
Primary OutFlow Max=1.0 cfs @ 12.23 hrs HW=295.59' TW=286.05' (Dynamic Tailwater)
$\left\llcorner_{3=C u l v e r t ~(I n l e t ~ C o n t r o l s ~} 1.0\right.$ cfs @ 2.1 fps)

Summary for Pond PSIS-2: PSIS-2

Inflow Area =	16,369 sf, 100.00\% Impervious		th	6.15" for $25-\mathrm{Yr} 24 \mathrm{Hr}$ event
Inflow	2.4 cfs @	12.08 hrs , Volume=	8,385 cf	
Outflow	1.2 cfs @	12.22 hrs , Volume=	8,385 cf,	Atten= 50\%, Lag= 8.4 min
Discarded =	0.1 cfs @	10.62 hrs , Volume=	6,484 cf	
Primary	1.1 cfs @	12.22 hrs , Volume=	1,901 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 309.35' @ 12.22 hrs Surf.Area= 2,128 sf Storage= $2,284 \mathrm{cf}$
Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time= 90.0 min (833.6-743.7)

Volume	Invert	Avail.Storage	Storage Description
\#1A	307.50'	1,514 cf	54.83'W $\times 38.80{ }^{\prime} \mathrm{L} \times 2.33$ 'H Field A
			4,964 cf Overall - 1,179 cf Embedded $=3,785$ cf $\times 40.0 \%$ Voids
\#2A	308.00'	1,179 cf	ADS_StormTech SC-310 +Capx 80 Inside \#1
			Effective Size $=28.9$ "W $\times 16.0$ H $\mathrm{H}=>2.07 \mathrm{sf} \times 7.12 \mathrm{~L}=14.7 \mathrm{cf}$
			Overall Size $=34.0$ 'W x 16.0"H x 7.56'L with 0.44 ' Overlap
			80 Chambers in 16 Rows
2,693 cf Total Available Storage			
Storage Group A created with Chamber Wizard			
Device	Routing	Invert Outlet Devices	
\#1	Discarded	$307.50{ }^{\prime} 2.410$	2.410 in/hr Exfiltration over Surface area
\#2	Device 3	308.83' 6.	Vert. Orifice/Grate X 8.00 C= 0.600
			ed to weir flow at low heads
\#3	Primary	$308.83{ }^{\prime} \begin{array}{ll}18 \\ & \mathrm{~L}= \\ & \text { In } \\ \\ \mathrm{n}=\end{array}$	" Round Culvert
			3.5' CPP, projecting, no headwall, $\mathrm{Ke=} 0.900$
			/ Outlet Invert= 308.83' / 307.00' S=0.1356 '/' Cc= 0.900
			.010 PVC, smooth interior, Flow Area= 1.77 sf

Discarded OutFlow Max=0.1 cfs @ 10.62 hrs HW=307.53' (Free Discharge)
—1=Exfiltration (Exfiltration Controls 0.1 cfs)
Primary OutFlow Max=1.1 cfs @ 12.22 hrs HW=309.35' TW=305.47' (Dynamic Tailwater)
$\left\llcorner_{3}=\right.$ Culvert (Inlet Controls 1.1 cfs @ 1.9 fps)
_2=Orifice/Grate (Passes 1.1 cfs of 3.9 cfs potential flow)

Summary for Pond PSIS-3: PSIS-3

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev=282.23' @ 12.98 hrs Surf.Area= 5,421 sf Storage $=17,949$ cf

Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time= 134.1 min (919.1-785.0)

Volume	Invert	Avail.Storage Storage Description	
\#1	277.50'	7,335 cf	37.00'W $\times 146.50^{\prime} \mathrm{L} \times 6.00{ }^{\prime} \mathrm{H}$ Prismatoid
			32,523 cf Overall - 14,186 cf Embedded $=18,337$ cf $\times 40.0 \%$ Voids
\#2	$278.00{ }^{\prime}$	14,186 cf	60.0" Round Pipe Storage $\times 5$ Inside \#1
			L= 144.5'
		21,521 cf Total Available Storage	
Device	Routing	Invert Outl	t Devices
\#1	Discarded	277.50 ' 8.270	$0 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Device 3	282.00 ' 12	" Vert. Orifice/Grate X 2.00 C= 0.600
			ed to weir flow at low heads
\#3	Primary	282.00' $\begin{array}{ll}\text { 18, } \\ & \mathrm{L}= \\ & \mathrm{ln} \\ & \mathrm{n}= \\ \end{array}$	" Round Culvert
			2.0' CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			/ Outlet Invert= 282.00' / 276.00' S=0.0652 '/' Cc= 0.900
			.010 PVC, smooth interior, Flow Area= 1.77 sf

Discarded OutFlow Max=1.0 cfs @ 11.45 hrs HW=277.56' (Free Discharge)
1 ${1=E x f i l t r a t i o n ~(E x f i l t r a t i o n ~ C o n t r o l s ~}^{1.0} \mathrm{cfs}$)
Primary OutFlow Max=0.2 cfs @ 12.98 hrs HW=282.23' TW=0.00' (Dynamic Tailwater)
-3=Culvert (Inlet Controls 0.2 cfs @ 1.3 fps)
$\boldsymbol{L}_{\mathbf{2}=\mathbf{O r i f i c e} / G r a t e}$ (Passes 0.2 cfs of 0.5 cfs potential flow)

Summary for Pond PSIS-4: PSIS-4

Inflow Area = 89,965 sf, 79.66\% Impervious, Inflow Depth > 5.22" for $25-\mathrm{Yr} 24 \mathrm{Hr}$ event Inflow = 12.0 cfs @ 12.08 hrs, Volume= 39,147 cf Outflow = $0.3 \mathrm{cfs} @ 9.60 \mathrm{hrs}$, Volume= $\quad 15,684 \mathrm{cf}$, Atten= 98%, Lag= 0.0 min Discarded = $\quad 0.3 \mathrm{cfs} @ 9.60 \mathrm{hrs}$, Volume= $\quad 15,684 \mathrm{cf}$ Primary $=0.0 \mathrm{cfs}$ @ 0.00 hrs , Volume= 0 cf Routed to Reach DP-1 : Ex. Wetland (series A)

Routing by Dyn-Stor-Ind method, Time Span $=0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Prepared by RJOC
HydroCAD® 10.10-6a s/n 04881 © 2020 HydroCAD Software Solutions LLC
Peak Elev= 284.36 ' @ 17.36 hrs Surf.Area $=4,560$ sf Storage $=25,611 \mathrm{cf}$

Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time= 140.7 min (922.8-782.1)

Discarded OutFlow Max=0.3 cfs @ $9.60 \mathrm{hrs} \mathrm{HW}=277.12^{\prime} \quad$ (Free Discharge)
1=Exfiltration (Exfiltration Controls 0.3 cfs)
Primary OutFlow Max=0.0 cfs @ 0.00 hrs HW=277.00' TW=0.00' (Dynamic Tailwater)
$L_{3=C u l v e r t ~(~ C o n t r o l s ~} 0.0 \mathrm{cfs}$)
$\mathcal{L}_{\mathbf{2}=\text { Orifice/Grate (Controls } 0.0 \mathrm{cfs} \text {) }}$

Summary for Pond PSIS-5: PSIS-5

Inflow Area = $\quad 128,432$ sf, 66.34% Impervious, Inflow Depth > 4.08" for $25-\mathrm{Yr} 24 \mathrm{Hr}$ event
Inflow = 15.2 cfs @ 12.10 hrs , Volume= $43,663 \mathrm{cf}$
Outflow = 5.9 cfs @ 12.36 hrs , Volume $=33,492 \mathrm{cf}$, Atten= 61\%, Lag= 15.3 min
Discarded $=\quad 0.2$ cfs @ 10.65 hrs , Volume= $13,647 \mathrm{cf}$
Primary =
5.7 cfs @ 12.36 hrs, Volume= 19,845 cf Routed to Reach DP-1 : Ex. Wetland (series A)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev=289.58' @ 12.36 hrs Surf.Area= 4,320 sf Storage= 13,998 cf

Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time=52.6 min (878.0-825.4)

Volume	Invert	Avail.Storage	Storage Description
\#1	285.50'	11,585 cf	60.0" Round Pipe Storage $\times 5$ Inside \#2 $\mathrm{L}=118.0^{\prime}$
\#2	285.00'	5,734 cf	36.00'W $\times 120.00^{\prime} \mathrm{L} \times 6.00^{\prime} \mathrm{H}$ Prismatoid 25,920 cf Overall $-11,585$ cf Embedded $=14,335$ cf $\times 40.0 \%$ Voids
		17,319 cf	Total Available Storage

Device	Routing	Invert	Outlet Devices
\#1	Discarded	285.00'	$2.410 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Device 3	288.50'	24.0" Vert. Orifice/Grate X 5.00 C= 0.600
			Limited to weir flow at low heads
\#3	Primary	288.50'	30.0" Round Culvert
			$\mathrm{L}=19.1$ ' CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= 288.50' / 287.50' S=0.0524 '/' Cc= 0.900
			$\mathrm{n}=0.010$ PVC, smooth interior, Flow Area= 4.91 sf

Discarded OutFlow Max=0.2 cfs @ 10.65 hrs HW=285.06' (Free Discharge)
—1=Exfiltration (Exfiltration Controls 0.2 cfs)
Primary OutFlow Max=5.7 cfs @ 12.36 hrs HW=289.58' TW=0.00' (Dynamic Tailwater)
—3=Culvert (Inlet Controls 5.7 cfs @ 2.8 fps)

Summary for Pond PSIS-6: PSIS-6

Inflow Area =	40,46	.86\% Imperviou	pth	4.24" for $25-\mathrm{Yr} 24 \mathrm{Hr}$ event
Inflow	4.6 cfs @	12.09 hrs , Volume=	14,285 cf	
Outflow	0.4 cfs @	11.67 hrs , Volume=	14,288 cf,	Atten= 91\%, Lag= 0.0 min
Discarded =	0.4 cfs @	11.67 hrs, Volume=	14,288 cf	
Primary	0.0 cfs @	0.00 hrs , Volume=	0 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 281.40' @ 13.09 hrs Surf.Area= 2,039 sf Storage= 5,513 cf
Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time= 115.8 min (924.2-808.4)

Volume	Invert	Avail.Storage	Storage Description
\#1A	277.50'	3,550 cf	73.92'W x 27.59'L x 6.75'H Field A
			13,767 cf Overall - 4,892 cf Embedded $=8,875$ cf $\times 40.0 \%$ Voids
\#2A	278.25'	4,892 cf	ADS_StormTech MC-4500 b +Capx 40 Inside \#1
			Effective Size $=90.4$ " $\mathrm{W} \times 60.0$ " H => $26.46 \mathrm{sf} \times 4.03 \mathrm{~L}=106.5 \mathrm{cf}$
			Overall Size $=100.0$ 'W x 60.0"H $\times 4.33$ 'L with 0.31 ' Overlap
			40 Chambers in 8 Rows
			Cap Storage $=39.5 \mathrm{cf} \times 2 \times 8$ rows $=632.0 \mathrm{cf}$
		8,442 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Discarded	277.50'	$8.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Device 3	284.00'	12.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#3	Primary	284.00'	12.0" Round Culvert
			$\mathrm{L}=19.5^{\prime} \mathrm{CPP}$, projecting, no headwall, $\mathrm{Ke}=0.900$ Inlet / Outlet Invert=284.00' 283.50 ' $\mathrm{S}=0.0256$ '/l' Cc= 0.900 $\mathrm{n}=0.010 \mathrm{PVC}$, smooth interior, Flow Area= 0.79 sf

Discarded OutFlow Max=0.4 cfs @ 11.67 hrs HW=277.59' (Free Discharge)

1 ${1=E x f i l t r a t i o n ~(E x f i l t r a t i o n ~ C o n t r o l s ~}^{0.4}$ cfs)
Primary OutFlow Max=0.0 cfs @ 0.00 hrs HW=277.50' TW=279.00' (Dynamic Tailwater)
$\leftarrow_{3=C u l v e r t ~(~ C o n t r o l s ~} 0.0 \mathrm{cfs}$)
$L_{2=O r i f i c e / G r a t e ~(C o n t r o l s ~} 0.0 \mathrm{cfs}$)

Summary for Pond PSIS-7: PSIS-7

Inflow Area =	31,42	61.99\% Impervious,	Depth >	3.77" for $25-\mathrm{Yr} 24 \mathrm{Hr}$ event
Inflow	3.0 cfs @	12.09 hrs , Volume=	9,877 cf	
Outflow	1.4 cfs @	12.26 hrs , Volume=	8,711 cf,	Atten= 52\%, Lag= 10.2 min
Discarded =	0.1 cfs @	10.73 hrs , Volume=	5,274 cf	
Primary	1.3 cfs @	12.26 hrs , Volume=	3,437 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev=290.71' @ 12.26 hrs Surf.Area= 1,616 sf Storage= 2,834 cf
Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time=81.5 min (877.7-796.2)

Volume	Invert	Avail.Storage	Storage Description	
\#1A	288.00'	1,528 cf	26.25'W x 61.58'L x 3.50'H Field A	
			5,657 cf Overall - 1,838 cf Embedded $=3,820$ cf $\times 40.0 \%$ Voids	
\#2A	288.50'	1,838 cf	ADS_StormTech SC-740 +Capx 40 Inside \#1	
			Effective Size $=44.6 \mathrm{~W} \times 30.0 \mathrm{~W}$ H $=>6.45 \mathrm{sf} \times 7.12 \mathrm{~L}=45.9 \mathrm{cf}$	
			Overall Size $=51.0$ "W $\times 30.0$ "H $\times 7.56{ }^{\prime} \mathrm{L}$ with 0.44 ' Overlap	
			40 Chambers in 5 Rows	
3,366 cf Total Available Storage				
Storage Group A created with Chamber Wizard				
Device	Routing	Invert O	Outlet Devices	
\#1	Discarded	288.00 ' 2.41	$2.410 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area	
\#2	Device 3	290.00' 12.0	" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads	
\#3	Primary	290.00' 12.0	12.0" Round Culvert	
	$\mathrm{L}=29.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$			
	Inlet / Outlet Invert= ${ }^{\text {n=0.010 }}$ 290.00' / 288.00' $\mathrm{S}=0.0690$ '/' $\mathrm{Cc}=0.900$			

Discarded OutFlow Max=0.1 cfs @ 10.73 hrs HW=288.04' (Free Discharge)
L1=Exfiltration (Exfiltration Controls 0.1 cfs)
Primary OutFlow Max=1.3 cfs @ 12.26 hrs HW=290.71' TW=279.44' (Dynamic Tailwater)
—3=Culvert (Inlet Controls 1.3 cfs @ 2.3 fps)

Summary for Pond PSIS-8: PSIS-8

Inflow Area =	23,738 sf, 69.64\% Impervious,	Inflow Depth > 5.33" for $25-\mathrm{Yr} 24 \mathrm{Hr}$ event
Inflow	3.2 cfs @ 12.08 hrs , Volume=	10,553 cf
Outflow =	1.2 cfs @ 12.33 hrs , Volume=	10,553 cf, Atten= 63\%, Lag= 14.6 min
Discarded =	0.2 cfs @ 11.31 hrs, Volume=	9,211 cf
Primary	1.0 cfs @ 12.33 hrs , Volume=	1,342 cf

Routed to Reach DP-1 : Ex. Wetland (series A)
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 276.59' @ 12.33 hrs Surf.Area= 1,108 sf Storage= 3,275 cf

Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time= 98.4 min (876.9-778.5)

Volume	Invert	Avail.Storage	Storage Description
\#1A	272.00'	1,611 cf	22.75'W x 48.72'L x 5.50'H Field A
			6,096 cf Overall - 2,069 cf Embedded $=4,028$ cf $\times 40.0 \%$ Voids
\#2A	272.75'	2,069 cf	ADS_StormTech MC-3500 d +Capx 18 Inside \#1
			Effective Size $=70.4$ "W $\times 45.0$ " $\mathrm{H}=>15.33 \mathrm{sf} \times 7.17 \mathrm{~L}=110.0 \mathrm{cf}$
			Overall Size $=77.0^{\prime \prime} \mathrm{W} \times 45.0{ }^{\prime \prime} \mathrm{H} \times 7.50^{\prime} \mathrm{L}$ with 0.33^{\prime} Overlap
			18 Chambers in 3 Rows
			Cap Storage $=14.9 \mathrm{cf} \times 2 \times 3$ rows $=89.4 \mathrm{cf}$

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Discarded	272.00'	$8.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Device 3	276.00'	6.0" Vert. Orifice/Grate X 2.00 C= 0.600
			Limited to weir flow at low heads
\#3	Primary	276.00'	12.0" Round Culvert
			$\mathrm{L}=5.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert=276.00' / 275.30' S=0.1400 '/' Cc= 0.900
			$\mathrm{n}=0.010$ PVC, smooth interior, Flow Area= 0.79 sf

Discarded OutFlow Max=0.2 cfs @ 11.31 hrs HW=272.06' (Free Discharge)
L1=Exfiltration (Exfiltration Controls 0.2 cfs)
Primary OutFlow Max=1.0 cfs @ 12.33 hrs HW=276.59' TW=0.00' (Dynamic Tailwater)
$\complement_{3=C u l v e r t ~(I n l e t ~ C o n t r o l s ~} 1.0$ cfs @ 2.1 fps)
$L_{\mathbf{2}}=\mathbf{O r i f i c e} /$ Grate (Passes 1.0 cfs of 1.1 cfs potential flow)

Summary for Pond SWB-1: SWB-1

Inflow Area	108,307 sf, 74.66\% Impervious, Inflow Depth > 1.96" for $25-\mathrm{Yr} 24 \mathrm{Hr}$ event			
Inflow	3.0 cfs @	12.46 hrs , Volume=	17,723 cf	
Outflow	0.6 cfs @	13.93 hrs , Volume=	17,722 cf,	Atten= 78\%, Lag= 88.2 min
Discarded =	0.6 cfs @	13.93 hrs , Volume=	17,722 cf	
Primary	0.0 cfs @	0.00 hrs , Volume=	0 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 287.34' @ 13.93 hrs Surf.Area= 3,359 sf Storage= 4,052 cf
Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time= $56.2 \mathrm{~min}(957.1-900.8$)

Volume	Invert Av	Avail.Storage	Storage Description		
\#1	286.00'	15,124 cf	Custom Stage D	(Irregular)L	w (Recal
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
286.00	2,700	234.0	0	0	2,700
288.00	3,710	309.0	6,383	6,383	5,986
290.00	5,066	373.0	8,741	15,124	9,526

Device	Routing	Invert	Outlet Devices
\#1	Discarded	286.00'	$8.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Primary	289.50'	20.0' long x 10.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.492 .562 .702 .692 .682 .692 .672 .64

Discarded OutFlow Max=0.6 cfs @ 13.93 hrs HW=287.34' (Free Discharge)
_1=Exfiltration (Exfiltration Controls 0.6 cfs)
Primary OutFlow Max=0.0 cfs @ 0.00 hrs HW=286.00' TW=0.00' (Dynamic Tailwater)
$L_{2=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~} 0.0 \mathrm{cfs}$)

Summary for Pond SWB-2: SWB-2

Inflow Area =	51,98	74.23\% Imperviou	硣	3.26" for $25-\mathrm{Yr} 24 \mathrm{Hr}$ event
Inflow	4.2 cfs @	12.14 hrs , Volume=	14,124 cf	
Outflow	3.7 cfs @	12.20 hrs , Volume=	11,117 cf,	Atten= 12\%, Lag= 4.0 min
Primary	3.7 cfs @	12.20 hrs , Volume=	11,117 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 305.48' @ 12.20 hrs Surf.Area= 3,002 sf Storage= 3,477 cf
Plug-Flow detention time= 136.6 min calculated for 11,113 cf (79% of inflow)
Center-of-Mass det. time= $45.7 \mathrm{~min}(888.1$ - 842.4)

Volume	Invert Ava	I.Storage	Storage Descriptio		
\#1	304.00'	5,186 cf	Custom Stage Data (Irregular)Listed below (Recalc)		
Elevation (feet)	Surf.Area (sq-ft)	Perim (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
304.00	1,766	207.0	0	0	1,766
306.00	3,520	316.0	5,186	5,186	6,333

Device	Routing	Invert	Outlet Devices
\#1	Primary	305.30'	20.0' long x 10.0' breadth Broad-Crested Rectangular Weir Head (feet) $0.20 \quad 0.400 .60 \quad 0.801 .001 .201 .401 .60$
			Coef. (English) $2.492 .562 .702 .692 .682 .692 .67 \quad 2.64$

Primary OutFlow Max=3.7 cfs @ 12.20 hrs HW=305.48' TW=0.00' (Dynamic Tailwater)
L- $_{1=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(W e i r ~ C o n t r o l s ~}^{3.7}$ cfs @ 1.0 fps)

Summary for Pond SWB-3: SWB-3

Inflow Area =	77,090	58.79\% Impervious	pth	0.81" for $25-\mathrm{Yr} 24 \mathrm{Hr}$ event
Inflow	1.6 cfs @	12.24 hrs , Volume=	$5,229 \mathrm{cf}$	
Outflow	0.0 cfs @	0.00 hrs , Volume=	0 cf,	Atten= 100\%, Lag $=0.0 \mathrm{~min}$
Primary	0.0 cfs @	0.00 hrs , Volume=	0 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev=280.58' @ 24.00 hrs Surf.Area= 3,658 sf Storage= $5,229 \mathrm{cf}$

Plug-Flow detention time= (not calculated: initial storage exceeds outflow)
Center-of-Mass det. time= (not calculated: no outflow)

Primary OutFlow Max=0.0 cfs @ 0.00 hrs HW=279.00' TW=0.00' (Dynamic Tailwater)
-1=Broad-Crested Rectangular Weir(Controls 0.0 cfs)

Summary for Subcatchment PR-1: northeastern locus

Runoff $=16.8$ cfs @ 12.18 hrs , Volume=
Routed to Reach DP-1 : Ex. Wetland (series A)

65,336 cf, Depth> 3.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

$12.6 \quad 603$ Total

Summary for Subcatchment PR-1.1: south of BVW A

Runoff = 3.3 cfs @ 12.09 hrs, Volume= 10,640 cf, Depth> 2.90"
Routed to Reach DP-1 : Ex. Wetland (series A)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

Area (sf)	CN	Description
21,801	77	Woods, Good, HSG D
120	39	$>75 \%$ Grass cover, Good, HSG A
1,471	80	$>75 \%$ Grass cover, Good, HSG D
20,582	30	Woods, Good, HSG A
43,974	55	Weighted Average
43,974		100.00% Pervious Area

| Tc
 (min) | Length
 (feet) |
| ---: | ---: | | Slope |
| ---: |
| $(\mathrm{ft} / \mathrm{ft})$ | | Velocity |
| ---: |
| $(\mathrm{ft} / \mathrm{sec})$ | | Capacity |
| ---: |
| (cfs) |\quad Description | Direct Entry, |
| :--- |

Summary for Subcatchment PR-1.10: TO PSIS-3

Runoff $=3.6$ cfs @ 12.08 hrs, Volume $=11,875$ cf, Depth> 6.86"
Routed to Pond PSIS-3 : PSIS-3
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

Summary for Subcatchment PR-1.11: TO PSDS-2

Runoff $=\quad 4.8$ cfs @ 12.08 hrs, Volume $=\quad 15,404$ cf, Depth> 6.50"
Routed to Pond PSDS-2 : PSDS-2
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

Area (sf)	CN	Description
$*$	22,222	98
Impervious Area		
5,404	39	$>75 \%$ Grass cover, Good, HSG A
812	80	$>75 \%$ Grass cover, Good, HSG D
28,438	86	Weighted Average
6,216		21.86% Pervious Area
22,222		78.14% Impervious Area

Tc	Length (min)	Slope (feet)	Velocity $(\mathrm{ft} / \mathrm{tt})$		
$(\mathrm{ft} / \mathrm{sec})$					Capacity
---:					
(cfs)					

6.0

Direct Entry, min. eng pract

Summary for Subcatchment PR-1.12: TO PSIS-2

Runoff $=\quad 3.0$ cfs @ 12.08 hrs, Volume= 10,823 cf, Depth> 7.93"
Routed to Pond PSIS-2 : PSIS-2
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

	Area (sf)	CN	Description
16,369 98 Roof Area 16,369 100.00% Impervious Area.			

Tc			
(min)	Length (feet)		Slope
---:			
$(\mathrm{ft} / \mathrm{ft})$		Velocity	
---:			
$(\mathrm{ft} / \mathrm{sec})$		Capacity	
---:			
(cfs)			

Direct Entry, min. eng pract

Summary for Subcatchment PR-1.13: TO PSIS-4

Runoff $=\quad 15.8$ cfs @ 12.08 hrs, Volume= 52,305 cf, Depth> 6.98"
Routed to Pond PSIS-4 : PSIS-4
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

	Area (sf)	CN	Description
53,830 98 Impervious Area * 18,296 61 >75\% Grass cover, Good, HSG B			
	98	Roof Area	
	90	Weighted Average	
18,296		20.34\% Pervious Area	
71,669		79.66% Impervious Area	

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ |
| ---: | ---: | ---: | :--- | | Capacity |
| ---: |
| (cfs) |\quad Description | Direct Entry, min. eng pract |
| :--- |

Summary for Subcatchment PR-1.14: TO PSIS-5

Runoff $=\quad 9.6$ cfs @ 12.09 hrs, Volume= 30,301 cf, Depth> 5.79" Routed to Pond PSIS-5 : PSIS-5

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment PR-1.14A: TO PSDS-3

Runoff $=11.6$ cfs @ 12.08 hrs, Volume= 38,799 cf, Depth> 7.10"
Routed to Pond PSDS-3 : PSDS-3
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

	Area (sf)	CN	Description
*	13,139	61	$>75 \%$ Grass cover, Good, HSG B
*	34,839	98	Roof Area
34,634	98	Impervious Area	
65,612	91	Weighted Average	
13,139		20.03\% Pervious Area	
	52,473		79.97% Impervious Area

Tc	Length (min)	Sloepe $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

6.0 Direct Entry, min. eng pract

Summary for Subcatchment PR-1.15: clubhouse roof

Runoff = 1.5 cfs @ 12.08 hrs, Volume= 5,235 cf, Depth> 7.93"
Routed to Pond PSIS-7 : PSIS-7
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

| | Area (sf) | CN |
| ---: | ---: | :--- | Description | * |
| :--- |
| 7,918 |
| 7,918 |

| Tc
 (min) | Length
 (feet) |
| ---: | ---: | | Slope |
| ---: |
| $(\mathrm{ft} / \mathrm{ft})$ | | Velocity |
| ---: |
| $(\mathrm{ft} / \mathrm{sec})$ | | Capacity |
| ---: |
| (cfs) |\quad Description | Direct Entry, min. eng pract |
| :--- |

Summary for Subcatchment PR-1.2: northern locus @ prop line

Runoff = 4.3 cfs @ 12.10 hrs , Volume= 13,652 cf, Depth> 3.69"
Routed to Reach DP-1 : Ex. Wetland (series A)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

Summary for Subcatchment PR-1.3: SE of BVW A

Runoff $=3.6$ cfs @ 12.09 hrs, Volume= 11,156 cf, Depth> 4.96"
Routed to Reach DP-1 : Ex. Wetland (series A)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

	Area (sf)	CN	Description		
	9,167	61	>75\% Grass cover, Good, HSG B		
	17,150	80	>75\% Grass cover, Good, HSG D		
	649	77 W	Woods, Good, HSG D		
	26,966	73	Weighted Average		
	26,966		100.00\% P	ervious Are	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{rr} c & \begin{array}{r} \text { Length } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	$\underset{(\mathrm{ft} / \mathrm{ft})}{\text { Slope }}$	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment PR-1.4: TO PSIS-8

Runoff $=4.2$ cfs @ 12.08 hrs, Volume=
Routed to Pond PSIS-8 : PSIS-8
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

Summary for Subcatchment PR-1.5: TO PSIS-3

Runoff $=10.1$ cfs @ 12.08 hrs, Volume $=\quad 33,338 \mathrm{cf}$, Depth> 6.86"
Routed to Pond PSIS-3 : PSIS-3
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

	Area (sf)	CN D	Description		
*	32,702	98 I	Impervious Area		
	9,258	$39>$	>75\% Grass cover, Good, HSG A		
*	16,379	98 R	Roof Area		
	58,339	89	Weighted Average		
	9,258		15.87\% Pervious Area		
	49,081		84.13\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description

6.0

Direct Entry, min. eng pract

Summary for Subcatchment PR-1.6: TO PSIS-6

Runoff $=\quad 6.3$ cfs @ 12.09 hrs, Volume $=\quad 19,917$ cf, Depth> 5.91"
Routed to Pond PSIS-6 : PSIS-6
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

Prepared by RJOC	Printed$12 / 7 / 2023$ HydroCAD® 10.10-6a $\mathrm{s} / \mathrm{n} 04881$ © 2020 HydroCAD Software Solutions LLC\quadPage

Area (sf)	CN	Description
25,841	98	Impervious Area
4,090	80	$>75 \%$ Grass cover, Good, HSG D
10,533	39	$>75 \%$ Grass cover, Good, HSG A
40,464	81	Weighted Average
14,623		36.14% Pervious Area
25,841		63.86% Impervious Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ |
| ---: | ---: | ---: | :--- | | Capacity |
| ---: |
| (cfs) |\quad Description | Direct Entry, min. eng pract |
| :--- |

Summary for Subcatchment PR-1.6A: TO SWB-3

Runoff = 0.8 cfs @ 12.09 hrs, Volume= 2,511 cf, Depth> 5.79"
Routed to Pond SWB-3 : SWB-3
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

	Area (sf)	CN Description			
	5,205	$80>$	75\% Gras	cover, Go	od, HSG D
5,205		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description

Summary for Subcatchment PR-1.7: TO PSIS-3

Runoff $=3.5$ cfs @ 12.08 hrs, Volume $=11,600$ cf, Depth> 6.74"
Routed to Pond PSIS-3 : PSIS-3
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

Summary for Subcatchment PR-1.8: clubhouse amenity area

Runoff $=1.5$ cfs @ 12.09 hrs , Volume= Routed to Pond PSIS-7 : PSIS-7

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

Summary for Subcatchment PR-1.8A: TO PSIS-7

Runoff = 1.2 cfs @ 12.09 hrs , Volume= $3,926 \mathrm{cf}$, Depth> 5.79"
Routed to Pond PSIS-7 : PSIS-7
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

	Area (sf)	CN	Description		
*	$\begin{aligned} & \hline 5,632 \\ & 2,508 \end{aligned}$	$\begin{aligned} & 98 \\ & 39 \end{aligned}$	Impervious Area $>75 \%$ Grass cover, Good, HSG A		
	$\begin{aligned} & \hline 8,140 \\ & 2,508 \\ & 5,632 \end{aligned}$	80	Weighted Average 30.81\% Pervious Area 69.19\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description

6.0

Direct Entry, min. eng pract

Summary for Subcatchment PR-1.9: TO PSIS-3

Runoff $=1.4$ cfs @ 12.08 hrs, Volume= 4,647 cf, Depth> 7.34"
Routed to Pond PSIS-3 : PSIS-3
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

Summary for Subcatchment PR-1.9A: TO SWB-2

Runoff = 0.7 cfs @ 12.09 hrs , Volume= 2,208 cf, Depth> 3.69"
Routed to Pond SWB-2 : SWB-2
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

Area (sf)	CN D	Description
6,695	$61>$	>75\% Grass cover, Good, HSG B
483	$80>$	>75\% Grass cover, Good, HSG D
7,178	62 W	Weighted Average
7,178		100.00\% Pervious Area
Tc Length (min) (feet)	Slope (ft/ft)	Velocity Capacity Description (ft/sec) (cfs)

6.0 Direct Entry, min. eng pract

Summary for Subcatchment PR-2: northeastern locus @ ROW

Runoff $=\quad 0.5 \mathrm{cfs} @ 12.10 \mathrm{hrs}$, Volume= $\quad 1,538 \mathrm{cf}$, Depth> 2.68"
Routed to Reach DP-2 : Grove Street
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

Area (sf)	CN	Description
936	98	Impervious Area
4,916	39	$>75 \%$ Grass cover, Good, HSG A
1,026	80	$>75 \%$ Grass cover, Good, HSG D
6,878	53	Weighted Average
5,942		86.39% Pervious Area
936		13.61% Impervious Area

$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
6.0	Direct Entry, Min. Engineering Practice					
Summary for Subcatchment PR-2.1: southeastern locus @ ROW						
Runoff $=\quad 0.2 \mathrm{cfs} @ 12.29 \mathrm{hrs}$ @ Volume= $\quad 1,431 \mathrm{cf}$, Depth> 0.78"Routed to Reach DP-2: Grove Street						

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

Area (sf)	CN	Description
12,525	30	Woods, Good, HSG A
9,576	39	$>75 \%$ Grass cover, Good, HSG A
22,101	34	Weighted Average
22,101		100.00% Pervious Area
Tc Length Slope (min) (feet) (ft/ft) Velocity (ft/sec) Capacity (cfs)		

Direct Entry, Min. Engineering Practice

Summary for Subcatchment PR-3: south of BVW B

Runoff $=\quad 0.1 \mathrm{cfs} @ 12.34 \mathrm{hrs}$, Volume= $\quad 1,270 \mathrm{cf}$, Depth> 0.61"
Routed to Reach DP-3 : Ex. Wetland (seies B)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs
Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

| | Area (sf) | CN |
| ---: | ---: | :--- | Description \quad| 19,666 | 30 | Woods, Good, HSG A |
| ---: | ---: | :--- |
| *,183 | 39 | $>75 \%$ Grass cover, Good, HSG A |
| 64 | 98 | Impervious Area |
| 24,913 | 32 | Weighted Average |
| 24,849 | | 99.74% Pervious Area |
| 64 | | 0.26% Impervious Area |

\(\left.$$
\begin{array}{rrrl}\begin{array}{r}\text { Tc } \\
(\mathrm{min})\end{array} & \begin{array}{r}\text { Length } \\
(\mathrm{feet})\end{array} & \begin{array}{r}\text { Slope } \\
(\mathrm{ft} / \mathrm{ft})\end{array} & \begin{array}{r}\text { Velocity } \\
(\mathrm{ft} / \mathrm{sec})\end{array}\end{array}
$$ \begin{array}{r}Capacity

(\mathrm{cfs})\end{array}\right)\) Description | Direct Entry, |
| :--- |

Summary for Subcatchment PR-3.1: north of BVW B

Runoff $=0.4$ cfs @ 12.15 hrs, Volume= 3,066 cf, Depth> 0.86" Routed to Reach DP-3 : Ex. Wetland (seies B)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

Area (sf)	CN	Description
17,728	30	Woods, Good, HSG A
24,872	39	$>75 \%$ Grass cover, Good, HSG A
42,600	35	Weighted Average
42,600		100.00% Pervious Area
Tc	Length	Slope (ft/ft)
Velocity (ft/sec)	Capacity (min) (cfs)	
6.0		Description

Summary for Subcatchment PR-3.2: south western locus

Runoff = 0.1 cfs @ 12.51 hrs, Volume= 1,000 cf, Depth> 0.46"
Routed to Reach DP-3 : Ex. Wetland (seies B)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

Area (sf)	CN	Description			
26,302	30	Woods, Good, HSG A			
26,302		100.00% Pervious Area			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description

13.0103 Total

Summary for Subcatchment PR-3.3: south of BVW B @ entrance

Runoff = 0.1 cfs @ 12.12 hrs, Volume= 515 cf, Depth> 1.23"
Routed to Reach DP-3 : Ex. Wetland (seies B)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

	Area (sf)	CN Description			
	5,020	$39>$	>75\% Gras	s cover, Go	od, HSG A
5,020		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment PR-3.4: north of BVW B @ entrance

Runoff $=0.3$ cfs @ 12.12 hrs , Volume=
Routed to Reach DP-3 : Ex. Wetland (seies B)
1,174 cf, Depth> $1.23{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

Area (sf)	CN	Description
11,446	39	$>75 \%$ Grass cover, Good, HSG A
11,446		100.00% Pervious Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description \quad Direct Entry

Summary for Subcatchment PR-3.5: to PSDS-1

Runoff $=\quad 13.4$ cfs @ 12.09 hrs , Volume= $42,858 \mathrm{cf}$, Depth> 6.26"
Routed to Pond PSDS-1 : PSDS-1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

Summary for Subcatchment PR-3.5A: to SWB-1
Runoff $=0.2$ cfs @ 12.12 hrs , Volume= 855 cf , Depth> 1.23"
Routed to Pond SWB-1 : SWB-1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

Area (sf)	CN	Description
8,341	39	$>75 \%$ Grass cover, Good, HSG A
8,341		100.00% Pervious Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ |
| ---: | ---: | ---: | ---: | | Capacity |
| ---: |
| (cfs) |\quad Description | Direct Entry, min. eng pract |
| :--- |

Summary for Subcatchment PR-3.6: bld 1 roof

Runoff $=3.3$ cfs @ 12.08 hrs , Volume= 11,794 cf, Depth> 7.93"
Routed to Pond PSIS-1 : PSIS-1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

Summary for Subcatchment PR-4: southwest corner locus

Runoff $=0.0$ cfs @ 12.44 hrs , Volume= 521 cf , Depth> 0.46" Routed to Reach DP-4 : 231 Grove Street

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr 24 Hr Rainfall=8.18"

Summary for Reach DP-1: Ex. Wetland (series A)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Reach DP-2: Grove Street

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Reach DP-3: Ex. Wetland (seies B)

Inflow	218,588 sf, 37.02\% Impervious	w Depth > 0.39" for 100-Yr 24 Hr event
Inflow	0.9 cfs @ 12.14 hrs, Volume=	7,090 cf
Outflow	0.9 cfs @ 12.14 hrs, Volume=	7,090 cf, Atten= 0\%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Reach DP-4: 231 Grove Street

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Pond PSDS-1: PSDS-1

Inflow Area =	82,127 sf, 76.74\% Impervious		Depth >	6.26 " for
Inflow	13.4 cfs @	12.09 hrs , Volume=	42,858 cf	
Outflow	7.6 cfs @	12.20 hrs , Volume=	27,529 cf,	Atten= $44 \%, L a g=7.0 \mathrm{~min}$
Primary	7.6 cfs @	12.20 hrs , Volume=	27,529 cf	

Routed to Pond SWB-1 : SWB-1
Routing by Dyn-Stor-Ind method, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs
Peak Elev=294.72' @ 12.20 hrs Surf.Area= $4,105 \mathrm{sf}$ Storage= $17,659 \mathrm{cf}$
Plug-Flow detention time $=174.0 \mathrm{~min}$ calculated for $27,529 \mathrm{cf}$ (64% of inflow)
Center-of-Mass det. time= 75.6 min (867.3-791.7)

Volume	Invert	Avail.Storage	Storage Description
\#1A	288.00'	6,666 cf	$46.67^{\prime} \mathrm{W} \times 87.97^{\prime} \mathrm{L} \times 6.75$ 'H Field A 27,710 cf Overall $-11,044$ cf Embedded $=16,665$ cf $\times 40.0 \%$ Voids
\#2A	288.75'	11,044 cf	ADS_StormTech MC-4500 b +Capx 100 Inside \#1 Effective Size $=90.4$ " $\mathrm{W} \times 60.0$ "H $=>26.46 \mathrm{sf} \times 4.03^{\prime} \mathrm{L}=106.5 \mathrm{cf}$ Overall Size $=100.0$ "W x 60.0 " $\mathrm{H} \times 4.33^{\prime} \mathrm{L}$ with 0.31 ' Overlap 100 Chambers in 5 Rows Cap Storage $=39.5 \mathrm{cf} \times 2 \times 5$ rows $=395.0 \mathrm{cf}$
		17,710 c	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices	
\#1	Device 2	293.25'	12.0" Vert. Orifice/Grate X 2.00 C= 0.600	
			Limited to weir flow at low heads	
\#2	Primary	293.25'	24.0" Round Culvert	
			$\mathrm{L}=21.6^{\prime} \mathrm{CPP}$, projecting, no headwall, $\mathrm{Ke}=0.900$	
			Inlet / Outlet Invert= 293.25' 292.00 ' S=0.0579 '/' Cc= 0.900	
			$\mathrm{n}=0.010$ PVC, smooth interior, Flow Area= 3.14 sf	
\#3	Device 4	288.00'	2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads	
\#4	Primary	288.00'	2.0" Round Culvert	
			$\mathrm{L}=90.0^{\prime}$ CPP, mitered to conform to fill, $\mathrm{Ke}=0.700$	
			Inlet / Outlet Invert=288.00' $/ 286.00^{\prime} \mathrm{S}=0.0222^{\prime} / / \mathrm{Cc}=0.900$	
			$\mathrm{n}=0.010 \mathrm{PVC}$, smooth interior, Flow Area $=0.02 \mathrm{sf}$	
Primary OutFlow Max=7.6 cfs @ 12.20 hrs HW=294.72' TW=286.96' (Dynamic Tailwater)				
- $2=$ Culvert (Passes 7.4 cfs of 8.0 cfs potential flow)				
-4=Culvert (Outlet Controls 0.1 cfs @ 5.0 fps)				
	Orifice/Gr	Passes 0	cfs of 0.3 cfs potential flow)	

Summary for Pond PSDS-2: PSDS-2

Inflow Area $=\quad 28,438$ sf, 78.14% Impervious, Inflow Depth > 6.50" for $100-\mathrm{Yr} 24 \mathrm{Hr}$ event Inflow = 4.8 cfs @ 12.08 hrs , Volume= $15,404 \mathrm{cf}$
Outflow = $4.7 \mathrm{cfs} @ 12.10 \mathrm{hrs}$, Volume= $14,582 \mathrm{cf}$, Atten= 2\%, Lag= 1.1 min Primary $=\quad 4.7$ cfs @ 12.10 hrs , Volume $=14,582 \mathrm{cf}$

Routed to Pond SWB-2 : SWB-2
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 311.63' @ 12.10 hrs Surf.Area= $1,111 \mathrm{sf}$ Storage= $2,054 \mathrm{cf}$

Plug-Flow detention time $=71.5 \mathrm{~min}$ calculated for $14,576 \mathrm{cf}$ (95% of inflow)
Center-of-Mass det. time $=42.0 \mathrm{~min}(828.4-786.4)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	308.50'	1,114 cf	$17.75^{\prime} \mathrm{W} \times 62.58^{\prime} \mathrm{L} \times 3.50^{\prime} \mathrm{H}$ Field A 3,888 cf Overall - 1,103 cf Embedded $=2,785$ cf $\times 40.0 \%$ Voids
\#2A	$309.00{ }^{\prime}$	1,103 cf	ADS_StormTech SC-740 +Capx 24 Inside \#1 Effective Size $=44.6$ "W x $30.0^{\prime \prime} \mathrm{H}=>6.45 \mathrm{sf} \times 7.12$ 'L $=45.9 \mathrm{cf}$ Overall Size $=51.0^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H} \times 7.56^{\prime} \mathrm{L}$ with 0.44^{\prime} Overlap 24 Chambers in 3 Rows

2,217 cf Total Available Storage
Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices		
\#1	Device 2	310.50'	12.0" Vert. Orifice/Grate X 2.00 C= 0.600		
			Limited to weir flow at low heads		
\#2	Primary	310.50'	24.0" Round Culvert		
			L= 4.7' CPP, projecting, no headwall, $\mathrm{Ke}=0.900$		
			Inlet / Outlet Invert= 310.50' / 310.40' S=0.0213'/' Cc= 0.900		
			$\mathrm{n}=0.010 \mathrm{PVC}$, smooth interior, Flow Area= 3.14 sf		
\#3	Device 4	308.50'	2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads		
\#4	Primary	308.50'	2.0" Round Culvert		
			$\mathrm{L}=66.0^{\prime}$ CPP, mitered to conform to fill, $\mathrm{Ke}=0.700$		
			Inlet / Outlet Invert= 308.50' / 306.00' S=0.0379 '/' Cc= 0.900		
			$\mathrm{n}=0.010 \mathrm{PVC}$, smooth interior, Flow Area= 0.02 sf		
Primary OutFlow Max=4.6 cfs @ 12.10 hrs HW=311.63' TW=305.55' (Dynamic Tailwater)					
-2=Culvert (Barrel Controls $4.5 \mathrm{cfs} @ 3.6 \mathrm{fps}$)					
$\square_{4}=$ Culvert (Barrel Controls 0.1 cfs @ 4.8 fps)					

Summary for Pond PSDS-3: PSDS-3

Inflow Area $=\quad 65,612$ sf, 79.97% Impervious, Inflow Depth > 7.10" for 100-Yr 24 Hr event
Inflow $=11.6$ cfs @ 12.08 hrs , Volume= $38,799 \mathrm{cf}$
Outflow = 11.0 cfs @ 12.11 hrs , Volume $=31,453 \mathrm{cf}$, Atten= 5%, Lag= 1.7 min
Primary $=11.0$ cfs @ 12.11 hrs, Volume $=31,453 \mathrm{cf}$
Routed to Pond PSIS-5 : PSIS-5
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 308.82' @ 12.11 hrs Surf.Area= 2,211 sf Storage= 9,159 cf
Plug-Flow detention time $=122.0$ min calculated for $31,440 \mathrm{cf}$ (81% of inflow)
Center-of-Mass det. time= $49.4 \mathrm{~min}(820.8-771.4)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	302.25'	3,737 cf	55.75'W x 39.67'L x 6.75'H Field A
			14,927 cf Overall - 5,586 cf Embedded $=9,342$ cf $\times 40.0 \%$ Voids
\#2A	$303.00{ }^{\prime}$	5,586 cf	ADS_StormTech MC-4500 b +Capx 48 Inside \#1
			Effective Size= 90.4"W x 60.0"H => $26.46 \mathrm{sf} \times 4.03{ }^{\prime} \mathrm{L}=106.5 \mathrm{cf}$
			Overall Size= 100.0"W x 60.0"H x 4.33'L with 0.31' Overlap
			48 Chambers in 6 Rows
			Cap Storage $=39.5 \mathrm{cf} \times 2 \times 6$ rows $=474.0$ cf
		9,322 cf	Total Available Storage

Storage Group A created with Chamber Wizard
Device Routing Invert Outlet Devices
\#1 $\begin{array}{llll}\text { Device } 2 & 307.00^{\prime} & 12.0 " \text { Vert. Orifice/Grate X } 3.00 \quad \mathrm{C}=0.600\end{array}$
Limited to weir flow at low heads
\#2 Primary 307.00' 24.0" Round Culvert
$\mathrm{L}=28.4$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$

Inlet / Outlet Invert= 307.00' / 306.00' S= 0.0352 '/' Cc= 0.900 $\mathrm{n}=0.010$ PVC, smooth interior, Flow Area= 3.14 sf
\#3 Device $4 \quad 302.2^{\prime} \quad$ 2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4 Primary

302.25' 2.0" Round Culvert

$\mathrm{L}=40.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
Inlet / Outlet Invert= 302.25' / 302.10' S=0.0037 '// Cc= 0.900
$\mathrm{n}=0.010$ PVC, smooth interior, Flow Area= 0.02 sf

Summary for Pond PSIS-1: PSIS-1

 Routed to Pond SWB-1 : SWB-1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev=296.01' @ 12.16 hrs Surf.Area= 1,224 sf Storage= 2,298 cf
Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time= 35.9 min (776.3-740.4)

Volume	Invert	Avail.Storage	Storage Description
\#1A	293.00'	1,162 cf	$49.00^{\prime} \mathrm{W} \times 24.98{ }^{\text {'L }} \times 3.50$ 'H Field A
			4,283 cf Overall - 1,378 cf Embedded $=2,905$ cf $\times 40.0 \%$ Voids
\#2A	293.50'	1,378 cf	ADS_StormTech SC-740 +Capx 30 Inside \#1
			Effective Size $=44.6$ " $\mathrm{W} \times 30.0 \mathrm{H}=\mathbf{~} 6.45 \mathrm{sf} \times 7.12 \mathrm{~L}=45.9 \mathrm{cf}$
			Overall Size $=51.0$ " $\mathrm{W} \times 30.0$ H $\mathrm{H} 7.56^{\prime} \mathrm{L}$ with 0.44 ' Overlap
			30 Chambers in 10 Rows
		2,540 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Discarded	293.00'	$8.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Device 3	295.00'	12.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#3	Primary	295.00'	12.0" Round Culvert
			$\mathrm{L}=3.7{ }^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= 295.00' / 294.80' S=0.0541 '/' Cc= 0.900
			$\mathrm{n}=0.010$ PVC, smooth interior, Flow Area= 0.79 sf

Discarded OutFlow Max=0.2 cfs @ 11.22 hrs HW=293.04' (Free Discharge)

_1=Exfiltration (Exfiltration Controls 0.2 cfs)
Primary OutFlow Max=2.1 cfs @ $12.16 \mathrm{hrs} \mathrm{HW}=296.00^{\prime}$ TW=286.51' (Dynamic Tailwater)
$\left\llcorner_{3=C u l v e r t ~(I n l e t ~ C o n t r o l s ~}^{2.1}\right.$ cfs @ 2.7 fps)
—2=Orifice/Grate (Passes 2.1 cfs of 2.7 cfs potential flow)

Summary for Pond PSIS-2: PSIS-2

Inflow Area =	16,369	f,100.00\% Impervious	Depth >	7.93" for 100-Yr 24 Hr event
Inflow	3.0 cfs @	12.08 hrs , Volume=	10,823 cf	
Outflow	2.4 cfs @	12.14 hrs , Volume=	10,823 cf,	Atten= 20\%, Lag= 3.6 min
Discarded =	0.1 cfs @	9.84 hrs , Volume=	7,290 cf	
Primary	2.3 cfs @	12.14 hrs , Volume=	$3,532 \mathrm{cf}$	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 309.63' @ 12.14 hrs Surf.Area= 2,128 sf Storage= $2,518 \mathrm{cf}$
Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time= $82.7 \mathrm{~min}(823.1-740.4)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	307.50'	1,514 cf	54.83'W $\times 38.80{ }^{\prime} \mathrm{L} \times 2.33$ 'H Field A
			4,964 cf Overall - 1,179 cf Embedded $=3,785$ cf x 40.0\% Voids
\#2A	$308.00{ }^{\prime}$	1,179 cf	ADS_StormTech SC-310 +Capx 80 Inside \#1
			Effective Size $=28.9$ " $\mathrm{W} \times 16.0 \mathrm{H} \mathrm{H}=>2.07 \mathrm{sf} \times 7.12 \mathrm{~L}=14.7 \mathrm{cf}$
			Overall Size $=34.0$ " $\mathrm{W} \times 16.0$ H $\mathrm{H} \times 7.56$ 'L with $0.44{ }^{\text {' O }}$ Overlap
			80 Chambers in 16 Rows
2,693 cf Total Available Storage			
Storage Group A created with Chamber Wizard			
Device	Routing	Invert Outlet Devices	
\#1	Discarded	$307.50 ' 2.410$	2.410 in/hr Exfiltration over Surface area
\#2	Device 3	308.83' 6.	Vert. Orifice/Grate X 8.00 C= 0.600
			ed to weir flow at low heads
\#3	Primary	308.83' $\begin{array}{ll}18 . \\ & \mathrm{L}= \\ & \text { Inle } \\ & \mathrm{n}= \\ & \end{array}$	" Round Culvert
			3.5' CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			/ Outlet Invert= 308.83' / 307.00' S=0.1356 '/' Cc= 0.900
			.010 PVC, smooth interior, Flow Area= 1.77 sf

Discarded OutFlow Max=0.1 cfs @ 9.84 hrs HW=307.53' (Free Discharge)
—1=Exfiltration (Exfiltration Controls 0.1 cfs)
Primary OutFlow Max=2.3 cfs @ 12.14 hrs HW=309.63' TW=305.57' (Dynamic Tailwater)
$\succ_{3}=$ Culvert (Inlet Controls 2.3 cfs @ 2.4 fps)
L- $_{\mathbf{2}=\text { Orifice/Grate (Passes }} 2.3$ cfs of 5.6 cfs potential flow)

Prepared by RJOC	Printed $12 / 7 / 2023$
HydroCAD® 10.10-6a $\sin 04881$ © 2020 HydroCAD Software Solutions LLC	Page 97

Summary for Pond PSIS-3: PSIS-3

Inflow Area =	107,379	82.73\% Imperviou		6.87" for 100-Yr 24 Hr event
Inflow	18.7 cfs @	12.08 hrs , Volume=	61,459 cf	
Outflow	5.6 cfs @	12.41 hrs , Volume=	61,472 cf,	Atten $=70 \%$, Lag $=19.3 \mathrm{~min}$
Discarded =	1.0 cfs @	11.07 hrs , Volume=	51,795 cf	
Primary	4.5 cfs @	12.41 hrs , Volume=	9,678 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev=283.21' @ 12.41 hrs Surf.Area= 5,421 sf Storage= 20,894 cf
Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time= 120.7 min (898.0-777.3)

Discarded OutFlow Max=1.0 cfs @ 11.07 hrs HW=277.56' (Free Discharge)
—1=Exfiltration (Exfiltration Controls 1.0 cfs)
Primary OutFlow Max=4.5 cfs @ 12.41 hrs HW=283.21' TW=0.00' (Dynamic Tailwater)
-3=Culvert (Inlet Controls 4.5 cfs @ 3.0 fps)

Summary for Pond PSIS-4: PSIS-4

Inflow Area =	89,965 sf, 79.66\% Impervious,		Depth >	6.98" for 100-Yr 24 Hr event
Inflow	15.8 cfs @	12.08 hrs , Volume=	52,305 cf	
Outflow	0.5 cfs @	15.94 hrs , Volume=	18,579 cf,	Atten $=97 \%, L a g=231.4 \mathrm{~min}$
Discarded =	0.3 cfs @	8.79 hrs , Volume=	16,638 cf	
Primary	0.2 cfs @	15.94 hrs , Volume=	1,941 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Prepared by RJOC
HydroCAD® 10.10-6a s/n 04881 © 2020 HydroCAD Software Solutions LLC
Peak Elev= 287.33 @ 15.94 hrs Surf.Area $=4,560$ sf Storage $=35,455 \mathrm{cf}$

Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time $=129.0 \mathrm{~min}$ (903.7-774.7)

Discarded OutFlow Max=0.3 cfs @ $8.79 \mathrm{hrs} \mathrm{HW}=277.12^{\prime}$ (Free Discharge)
1=Exfiltration (Exfiltration Controls 0.3 cfs)
Primary OutFlow Max=0.2 cfs @ 15.94 hrs HW=287.33' TW=0.00' (Dynamic Tailwater)
$\left\llcorner_{3}=\right.$ Culvert (Inlet Controls 0.2 cfs @ 1.5 fps)
L- $_{2}=$ Orifice/Grate (Passes 0.2 cfs of 0.3 cfs potential flow)

Summary for Pond PSIS-5: PSIS-5

Inflow Area = 128,432 sf, 66.34\% Impervious, Inflow Depth > 5.77" for 100-Yr 24 Hr event Inflow $=20.4$ cfs @ 12.10 hrs , Volume= $61,754 \mathrm{cf}$
Outflow = 15.0 cfs @ 12.18 hrs , Volume= $51,237 \mathrm{cf}$, Atten= 27%, Lag= 4.9 min
Discarded = $\quad 0.2$ cfs @ 9.79 hrs , Volume= $14,485 \mathrm{cf}$
Primary $=14.8 \mathrm{cfs} @ 12.18 \mathrm{hrs}$, Volume= $\quad 36,752 \mathrm{cf}$ Routed to Reach DP-1 : Ex. Wetland (series A)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev=290.39' @ 12.18 hrs Surf.Area= 4,320 sf Storage= 16,234 cf
Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time $=34.8 \mathrm{~min}(846.1-811.3)$

Volume	Invert	Avail.Storage	Storage Description
\#1	285.50'	11,585 cf	60.0" Round Pipe Storage $\times 5$ Inside \#2 $\mathrm{L}=118.0^{\prime}$
\#2	285.00'	5,734 cf	36.00'W $\times 120.00^{\prime} \mathrm{L} \times 6.00^{\prime} \mathrm{H}$ Prismatoid 25,920 cf Overall $-11,585$ cf Embedded $=14,335$ cf $\times 40.0 \%$ Voids
		17,319 cf	Total Available Storage

Device	Routing	Invert	Outlet Devices
\#1	Discarded	285.00'	$2.410 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Device 3	288.50'	24.0" Vert. Orifice/Grate X 5.00 C= 0.600
			Limited to weir flow at low heads
\#3	Primary	288.50'	30.0" Round Culvert
			$\mathrm{L}=19.1$ ' CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= 288.50' / 287.50' S=0.0524 '/' Cc= 0.900
			$\mathrm{n}=0.010$ PVC, smooth interior, Flow Area= 4.91 sf

Discarded OutFlow Max=0.2 cfs @ $9.79 \mathrm{hrs} \mathrm{HW}=285.06$ ' (Free Discharge)
_1=Exfiltration (Exfiltration Controls 0.2 cfs)
Primary OutFlow Max=14.7 cfs @ 12.18 hrs HW=290.39' TW=0.00' (Dynamic Tailwater)
—3=Culvert (Inlet Controls 14.7 cfs @ 3.7 fps)

Summary for Pond PSIS-6: PSIS-6

Inflow Area =	40,46	\% Imperviou		5.91" for 100-Yr 24 Hr event
Inflow	6.3 cfs @	12.09 hrs , Volume=	19,917 cf	
Outflow	0.6 cfs @	13.02 hrs , Volume=	19,917 cf,	Atten $=91 \%$, Lag $=56.0$ min
Discarded =	0.4 cfs @	11.41 hrs , Volume=	19,488 cf	
Primary	0.2 cfs @	13.02 hrs , Volume=	429 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 284.22' @ 13.02 hrs Surf.Area= 2,039 sf Storage= 8,421 cf
Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time= 183.0 min (982.1-799.1)

Volume	Invert	Avail.Storage	Storage Description
\#1A	277.50'	3,550 cf	73.92'W x 27.59'L x 6.75'H Field A
			13,767 cf Overall - 4,892 cf Embedded $=8,875$ cf x 40.0\% Voids
\#2A	278.25'	$4,892 \mathrm{cf}$	ADS_StormTech MC-4500 b +Capx 40 Inside \#1
			Effective Size= 90.4"W x 60.0"H => $26.46 \mathrm{sf} \times 4.03^{\prime} \mathrm{L}=106.5 \mathrm{cf}$
			Overall Size $=100.0$ " $\mathrm{W} \times 60.0 \mathrm{H} \times 4.33$ 'L with 0.31 ' Overlap
			40 Chambers in 8 Rows
			Cap Storage $=39.5 \mathrm{cf} \times 2 \times 8$ rows $=632.0$ cf
		8,442 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Discarded	277.50'	$8.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Device 3	284.00'	12.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#3	Primary	284.00'	12.0" Round Culvert
			$\mathrm{L}=19.5^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= 284.00' / 283.50' S=0.0256 '/' Cc= 0.900
			$\mathrm{n}=0.010 \mathrm{PVC}$, smooth interior, Flow Area= 0.79 sf

Discarded OutFlow Max=0.4 cfs @ 11.41 hrs HW=277.58' (Free Discharge)
1 ${1=E x f i l t r a t i o n ~(E x f i l t r a t i o n ~ C o n t r o l s ~}^{0.4}$ cfs)
Primary OutFlow Max=0.2 cfs @ 13.02 hrs HW=284.22' TW=280.92' (Dynamic Tailwater)
$\leftarrow_{3=C u l v e r t ~(I n l e t ~ C o n t r o l s ~} 0.2$ cfs @ 1.3 fps)
L2=Orifice/Grate (Passes 0.2 cfs of 0.2 cfs potential flow)

Summary for Pond PSIS-7: PSIS-7

Inflow Area =	31,42	61.99\% Impervious	Depth >	5.30" for 100-Yr 24 Hr event
Inflow	4.2 cfs @	12.09 hrs , Volume=	13,888 cf	
Outflow	3.0 cfs @	12.16 hrs , Volume=	12,297 cf,	Atten $=29 \%, L a g=4.7 \mathrm{~min}$
Discarded $=$	0.1 cfs @	9.93 hrs , Volume=	5,580 cf	
Primary	2.9 cfs @	12.16 hrs , Volume=	6,717 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 291.46' @ 12.16 hrs Surf.Area= 1,616 sf Storage= 3,337 cf
Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time= 48.3 min (839.8-791.5)

Volume	Invert	Avail.Storage	Storage Description	
\#1A	288.00'	1,528 cf	26.25'W x 61.58'L x 3.50'H Field A	
			5,657 cf Overall - 1,838 cf Embedded $=3,820$ cf $\times 40.0 \%$ Voids	
\#2A	288.50'	1,838 cf	ADS_StormTech SC-740 +Capx 40 Inside \#1	
			Effective Size $=44.6 \mathrm{~W} \times 30.0 \mathrm{~W}$ H $=>6.45 \mathrm{sf} \times 7.12 \mathrm{~L}=45.9 \mathrm{cf}$	
			Overall Size $=51.0$ "W $\times 30.0$ "H $\times 7.56{ }^{\prime} \mathrm{L}$ with 0.44 ' Overlap	
			40 Chambers in 5 Rows	
3,366 cf Total Available Storage				
Storage Group A created with Chamber Wizard				
Device	Routing	Invert O	Outlet Devices	
\#1	Discarded	288.00 ' 2.41	$2.410 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area	
\#2	Device 3	290.00' 12.0	" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads	
\#3	Primary	290.00' 12.0	12.0" Round Culvert	
	$\mathrm{L}=29.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$			
	Inlet / Outlet Invert= ${ }^{\text {n=0.010 }}$ 290.00' / 288.00' $\mathrm{S}=0.0690$ '/' $\mathrm{Cc}=0.900$			

Discarded OutFlow Max=0.1 cfs @ 9.93 hrs HW=288.04' (Free Discharge)
L-1=Exfiltration (Exfiltration Controls 0.1 cfs)
Primary OutFlow Max=2.9 cfs @ 12.16 hrs HW=291.45' TW=279.70' (Dynamic Tailwater)
$\left\llcorner_{3=C u l v e r t ~(I n l e t ~ C o n t r o l s ~}^{2.9}\right.$ cfs @ 3.7 fps)
$L_{2}=$ Orifice/Grate (Passes 2.9 cfs of 3.7 cfs potential flow)

Prepared by RJOC	Printed12/7/2023 HydroCAD® 10.10-6a $\sin 04881 ~ © ~ 2020 ~ H y d r o C A D ~ S o f t w a r e ~ S o l u t i o n s ~ L L C ~$

Summary for Pond PSIS-8: PSIS-8

Routed to Reach DP-1 : Ex. Wetland (series A)
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 277.47' @ 12.20 hrs Surf.Area= 1,108 sf Storage= 3,664 cf

Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time= 88.0 min (859.4-771.4)

Volume	Invert	Avail.Storage	Storage Description
\#1A	272.00'	1,611 cf	22.75'W x 48.72'L x 5.50'H Field A
			6,096 cf Overall - 2,069 cf Embedded $=4,028$ cf $\times 40.0 \%$ Voids
\#2A	$272.75{ }^{\prime}$	2,069 cf	ADS_StormTech MC-3500 d +Capx 18 Inside \#1
			Effective Size $=70.4$ " $\mathrm{W} \times 45.0$ " $\mathrm{H}=>15.33 \mathrm{sf} \times 7.17 \mathrm{~L}=110.0 \mathrm{cf}$
			Overall Size $=77.0^{\prime \prime} \mathrm{W} \times 45.0{ }^{\prime \prime} \mathrm{H} \times 7.50^{\prime} \mathrm{L}$ with 0.33^{\prime} Overlap
			18 Chambers in 3 Rows
			Cap Storage $=14.9 \mathrm{cf} \times 2 \times 3$ rows $=89.4 \mathrm{cf}$

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Discarded	272.00'	$8.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Device 3	276.00'	6.0" Vert. Orifice/Grate X 2.00 C= 0.600
			Limited to weir flow at low heads
\#3	Primary	276.00'	12.0" Round Culvert
			$\mathrm{L}=5.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert=276.00' / 275.30' S=0.1400 '/' Cc= 0.900
			$\mathrm{n}=0.010$ PVC, smooth interior, Flow Area= 0.79 sf

Discarded OutFlow Max=0.2 cfs @ 10.75 hrs HW=272.06' (Free Discharge)
_1=Exfiltration (Exfiltration Controls 0.2 cfs)
Primary OutFlow Max=2.1 cfs @ 12.20 hrs HW=277.46' TW=0.00' (Dynamic Tailwater)
— $3=$ Culvert (Passes 2.1 cfs of 2.9 cfs potential flow)

Summary for Pond SWB-1: SWB-1

Prepared by RJOC Printed 12/7/2023

HydroCAD® 10.10-6a s/n 04881 © 2020 HydroCAD Software Solutions LLC

Inflow Area	108,307 sf, 74.66\% Impervious, Inflow Depth > 3.45" for 100-Yr 24 Hr event			
Inflow	9.7 cfs @	12.19 hrs , Volume=	31,094 cf	
Outflow	1.0 cfs @	13.63 hrs , Volume=	31,098 cf,	Atten= 90\%, Lag $=86.7 \mathrm{~min}$
Discarded	0.9 cfs @	13.63 hrs , Volume=	31,032 cf	
Primary	0.1 cfs @	13.63 hrs , Volume=	66 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 289.51' @ 13.63 hrs Surf.Area= 4,715 sf Storage= 12,733 cf
Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time= 155.9 min (1,013.4-857.5)

Volume	Invert Avail.Storage		Storage Description		
\#1	286.00'	15,124 cf	Custom Stage D	regular)L	w (Recalc)
Elevation (feet)	$\begin{array}{r} \text { Surf.Area } \\ (\mathrm{sq}-\mathrm{ft}) \\ \hline \end{array}$	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	$\begin{array}{r} \text { Wet.Area } \\ (\mathrm{sq}-\mathrm{ft}) \end{array}$
286.00	2,700	234.0	0	0	2,700
288.00	3,710	309.0	6,383	6,383	5,986
290.00	5,066	373.0	8,741	15,124	9,526

Device	Routing	Invert	Outlet Devices
\#1	Discarded	286.00'	$8.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Primary	289.50'	20.0' long x 10.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.492 .562 .702 .692 .682 .692 .672 .64

Discarded OutFlow Max=0.9 cfs @ 13.63 hrs
$\underbrace{}_{\mathbf{1}=\text { Exfiltration (Exfiltration Controls } 0.9 \mathrm{cfs} \text {) }} \mathrm{HW}=289.51^{\prime} \quad$ (Free Discharge)
Primary OutFlow Max=0.1 cfs @ 13.63 hrs HW=289.51' TW=0.00' (Dynamic Tailwater)
L2=Broad-Crested Rectangular Weir(Weir Controls 0.1 cfs @ 0.3 fps)

Summary for Pond SWB-2: SWB-2

 Routed to Reach DP-1 : Ex. Wetland (series A)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs
Peak Elev= 305.57' @ 12.14 hrs Surf.Area= 3,095 sf Storage= 3,775 cf
Plug-Flow detention time= 97.1 min calculated for $17,314 \mathrm{cf}$ (85% of inflow)
Center-of-Mass det. time= 31.1 min (847.7-816.6)

Summary for Pond SWB-3: SWB-3

Routed to Reach DP-1 : Ex. Wetland (series A)
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 281.42' @ 15.05 hrs Surf.Area= 4,045 sf Storage= 8,470 cf

Plug-Flow detention time $=327.5 \mathrm{~min}$ calculated for $1,258 \mathrm{cf}$ (13% of inflow)
Center-of-Mass det. time $=230.0 \mathrm{~min}(1,015.6-785.6)$

Primary OutFlow Max=0.1 cfs @ 15.05 hrs HW=281.42' TW=0.00' (Dynamic Tailwater)
—1 $^{1=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(W e i r ~ C o n t r o l s ~} 0.1$ cfs @ 0.4 fps)

This Page Intentionally Left Blank

TSS Removal Train Calculations

This Page Intentionally Left Blank

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table 2. The calcualtions must be completed using the Column Headings specified in Chart and Not the Excel Column Headings 3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row 5. Total TSS Removal = Sum All Values in Column D

121 Grove Street, Franklin MA

 ABMP

Location:

Train 1

Deep Sump Catchbasin, CDS Unit, PSIS
-

$$
\mathrm{B}
$$ Remaining

Load (C-D)

0.25	0.75
0.60	0.15
0.12	0.03
97.0%	

[^6]** See portion of STEP Fact Sheet for removal rate
Total TSS Removal =

22016
RJ O'Connell \& Associates, Inc.
$12 / 18 / 2023$

ио!̣e|nove

ןe^ошәу SSL Mass. Dept. of Environmental Protection 1. From MassDEP Stormwater Handbook Vol. 1G:IMAIFranklin|Fairfield Residential121 Grove StreetIReportsIStormwater Report|Appendix C - Computationsl22016-Tss-1

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table 2. The calcualtions must be completed using the Column Headings specified in Chart and Not the Excel Column Headings 5. Total TSS Removal = Sum All Values in Column D

$$
\begin{aligned}
& \text { 2. The calcualtions must be completed using the Column Headings specified in Chart and Not the Excel Column Headings } \\
& \text { 3. To complete Chart Column D, multiple Column B value within Row x Column } C \text { value within Row } \\
& \text { 4. To complete Chart Column E value, subtract Column D value within Row from Column } C \text { within Row } \\
& \text { 5. Total TSS Removal = Sum All Values in Column D } \\
& \text { Location: } 121 \text { Grove Street, Franklin MA } \\
& \text { Train } 1 \text { Deep Sump Catchbasin, CDS Unit, SWB-1 }
\end{aligned}
$$

A
BMP

$$
\begin{aligned}
& \text { B } \\
& \text { Removal } \\
& \text { Rate }
\end{aligned}
$$

25\%
عno\%
Starting TSS

Non-automated: Mar.4, 2008
*Equals remaining load from previous BMP(E) which enters the BMP
** See portion of STEP Fact Sheet for removal rate Mass. Dept. of Environmental Protection

1. From MassDEP Stormwater Handbook Vol. 1G:IMA\Franklin\Fairfield Residentiall121 Grove Street\Reports\Stormwater ReportlAppendix C - Computations\22016-Tss-2

Oust be used if Proprietary BMP Proposed

A BMP	B TSS Removal Rate	C Starting TSS Load*	```D Amount Removed (B*C)```	E Remaining Load (C-D)
Deep-Sump Catchbasin	25\%	1.00	0.25	0.75
CDS Unit	80\%	0.75	0.60	0.15
Proposed Surface Detention System (PSDS)/FES	0\%	0.15	0.00	0.15

ио!̣епиэет
ןелошәу SSI

Average Annual Load of TSS Removal Calculation:

Stormwater design proposes three (3) types of TSS Removal Trains as outlined in the attached TSS Removal worksheets and as noted below:

- Proposed TSS Train types:
o TSS-1: Deep Sump Catchbasin, Water Quality Unit, Subsurface Infiltration System
o TSS-2: Deep Sump Catchbasin, Water Quality Unit, Surface Infiltration Basin
o TSS-3: Deep Sump Catchbasin, Water Quality Unit, Subsurface Detention System, Surface Detention Basin
- Proposed TSS Train types provide removal rates of the following:

0 TSS-1: 97\%
0 TSS-2: 97\%
0 TSS-3: 85\%

- A total of eleven (11) TSS Removal Trains are proposed throughout the stormwater design, with them being divided into the types of trains as noted below:

0 TSS-1: 9 of 11
0 TSS-2: 1 of 11
0 TSS-3: 1 of 11

- Applying a weighted average to the TSS removal trains proposed on the project yields the following Average Annual Load of TSS Removal:
$0 \quad(9)(97 \%) *(1)(97 \%) *(1)(85 \%)$

Average Annual Load of TSS Removal= 95.8\%

This Page Intentionally Left Blank

Pipe Sizing Calculations

This Page Intentionally Left Blank

				Storm	nage C	mputatio									
				Nam	Fairfield	Grove S		Proj. No.: Date:			$\begin{aligned} & 22016 \\ & 2 / 18 / 2 \end{aligned}$			$\begin{array}{r} \text { Design P } \\ 25 \end{array}$	eters: ar Storm
	80 Montvale			Clien	Fairfield	ove Stre	LLC	Computed by			CMM				
	Stoneham M	2180						Checked by:			MAC				
	P 781.279.01														
		ION	AREA	Cn	$\mathrm{Cn} \times \mathrm{A}$	SUM	TIME OF	INTENSITY			DESIG				CITY
DESCRIPTION	FROM	то	(AC.)			$\mathrm{Cn} \times \mathrm{A}$	Concentration	IDF CURVE	$\begin{aligned} & \mathbf{Q} \\ & \mathrm{cfs} \end{aligned}$	$\begin{gathered} \hline \mathbf{V} \\ \mathrm{fps} \end{gathered}$	n	$\begin{aligned} & \hline \text { PIPE } \\ & \text { sIZE } \end{aligned}$	SLOPE	$\begin{aligned} & \text { Q full } \\ & \mathrm{ft}^{\wedge} 3 / \mathrm{s} \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \text { full } \\ \mathrm{ft} / \mathrm{s} \end{gathered}$
To PSDS-1 (IN\#1)	CB-10	DMH-18	0.19	0.90	0.17	0.17	6.0	6.3	1.07	3.30	0.012	12	0.008	3.45	4.40
	DCB-11	DMH-18	0.15	0.90	0.14	0.31	6.0	6.3	1.92	3.46	0.012	12	0.006	2.99	3.81
	DMH-18	DMH-19	-	-	-	0.48	6.0	6.3	2.99	3.84	0.012	18	0.006	8.81	4.99
	DMH-19	DMH-20	-	-	-	0.48	6.0	6.3	2.99	4.20	0.012	18	0.008	10.18	5.76
	DCB-12	DMH-20	0.38	0.90	0.34	0.34	6.0	6.3	2.15	5.19	0.012	12	0.017	5.03	6.41
	DMH-20	CDS-2	-	-	-	0.82	6.0	6.3	5.15	4.63	0.012	18	0.007	9.52	5.39
	CB-13	CDS-2	0.21	0.90	0.19	0.19	6.0	6.3	1.19	3.88	0.012	12	0.012	4.23	5.38
	CDS-2	PSDS-1	-	-	-	1.01	6.0	6.3	6.34	5.04	0.012	18	0.007	9.79	5.54
To PSDS-1 (in \#2)	CB-15	DMH-16	0.19	0.90	0.17	0.17	6.0	6.3	1.08	2.75	0.012	12	0.005	2.73	3.48
	CB-16	DMH-16	0.11	0.90	0.10	0.27	6.0	6.3	1.70	5.63	0.012	12	0.026	6.22	7.92
	DMH-16	CDS-1	-	-	-	0.27	6.0	6.3	1.70	3.49	0.012	12	0.007	3.23	4.11
	CB-17	CDS-1	0.02	0.90	0.02	0.29	6.0	6.3	1.81	7.18	0.012	12	0.049	8.54	10.88
	CDS-1	PSDS-1	-	-	-	0.29	6.0	6.3	1.81	4.36	0.012	12	0.012	4.23	5.38
To PSIS-1	BLDG-1	PSIS-1	0.41	0.90	0.37	0.27	6.0	6.3	1.70	6.07	0.012	12	0.032	6.90	8.79
Outlet to FES-1	PSIS-1	FES-1	-		-	-	6.0	6.3	1.0	6.11	0.012	12	0.055	9.05	11.53

Storm Drainage Computations
gn Parameters:
$\mathbf{2 5}$ Year Storm
$\mathbf{k}_{\mathrm{e}}=\mathbf{0 . 5}$

DESCRIPTION	LOCATION		AREA (AC.)	Cn	Cnx A	$\begin{aligned} & \text { SUM } \\ & \mathrm{Cn} \times \mathrm{A} \end{aligned}$	TIME OF CONCENTRATION	INTENSITY IDF CURVE	DESIGN					CAPACITY	
	FROM	TO							$\begin{gathered} \mathbf{Q} \\ \text { cfs } \end{gathered}$	$\begin{gathered} \mathbf{V} \\ \text { fps } \end{gathered}$	n	$\begin{aligned} & \hline \text { PIPE } \\ & \text { SIZE } \end{aligned}$	SLOPE	$\begin{aligned} & \text { Q full } \\ & \mathrm{ft}^{\wedge} 3 / \mathrm{s} \end{aligned}$	V full ft / s
To PSDS-2 (IN\#1)	CB-24	DMH-13	0.09	0.90	0.08	0.08	6.0	6.3	0.51	2.97	0.012	12	0.013	4.40	5.60
	CB-25	DMH-13	0.05	0.90	0.05	0.13	6.0	6.3	0.79	3.61	0.012	12	0.015	4.73	6.02
	DMH-13	DMH-14	-	-	-	0.13	6.0	6.3	0.79	2.54	0.012	12	0.005	2.73	3.48
	DCB-26	DMH-14	0.12	0.90	0.11	0.23	6.0	6.3	1.47	4.51	0.012	12	0.015	4.73	6.02
	DMH-14	CDS-6	-	-	-	0.23	6.0	6.3	1.47	3.97	0.012	12	0.011	4.05	5.15
	DCB-27	CDS-6	0.16	0.90	0.14	0.47	6.0	6.3	2.95	5.42	0.012	12	0.015	4.73	6.02
	CDS-6	PSDS-2	-	-	-	0.47	6.0	6.3	2.95	8.84	0.012	12	0.056	9.13	11.63
To PSDS-2 (IN\#2)	CB-28	PSDS-2	0.11	0.90	0.10	0.10	6.0	6.3	0.62	3.88	0.012	12	0.024	5.98	7.61
Outlet to FES-6	PSDS-2	DMH-15	-	-	-	-	6.0	6.3	3.40	5.54	0.012	24	0.021	35.51	11.31
	DMH-15	FES-6	-	-	-	-	6.0	6.3	3.40	7.25	0.012	24	0.054	56.95	18.13
TO PSIS-2	BLDG-2	PSIS-2	0.37	0.90	0.33	0.33	6.0	6.3	2.10	6.98	0.012	12	0.040	7.72	9.83
Outlet to FES-5	PSIS-2	FES-5	-	-	-	-	6.0	6.3	1.10	6.89	0.012	18	0.136	41.97	23.75

Name: Fairfield at Grove Street
Client: Fairfield Grove Street LLC

DESCRIPTION	LOCATION		AREA (AC.)	Cn	Cnx A	$\begin{aligned} & \text { SUM } \\ & C n \times A \end{aligned}$	TIME OF CONCENTRATION	INTENSITY IDF CURVE	DESIGN					CAPACITY	
	FROM	TO							$\begin{gathered} \mathbf{Q} \\ \mathrm{cfs} \end{gathered}$	$\begin{gathered} \mathbf{V} \\ \text { fps } \end{gathered}$	n	$\begin{aligned} & \hline \text { PIPE } \\ & \text { SIZE } \end{aligned}$	SLOPE	$\begin{aligned} & \text { Q full } \\ & \mathrm{ft}^{\wedge} 3 / \mathrm{s} \end{aligned}$	V full ft / s
	CDS-12	PSIS-4	-	-	-	0.54	6.0	6.3	3.40	3.69	0.012	18	0.005	8.05	4.55
To PSIS-4 (IN\#3)	BLDG-4	PSIS-4	0.41	0.90	0.37	0.37	6.0	6.3	2.32	7.80	0.012	12	0.05	8.63	10.99
Outlet to FES-10	PSIS-4	DMH-42	-	-	-	-	6.0	6.3	0.0	0.00	0.012	6	0.04	1.22	6.19
	DMH-42	FES-10	-	-	-	-	6.0	6.3	0.0	0.00	0.012	6	0.054	1.41	7.19

DESCRIPTION	LOCATION		AREA (AC.)	Cn	Cn x A	$\begin{aligned} & \text { SUM } \\ & \text { Cn } \times \mathrm{A} \end{aligned}$	TIME OF CONCENTRATION	INTENSITY IDF CURVE	DESIGN					CAPACITY	
	FROM	TO							$\begin{gathered} \mathbf{Q} \\ \mathrm{cfs} \end{gathered}$	$\begin{gathered} \mathbf{V} \\ \mathrm{fps} \end{gathered}$	n	$\begin{aligned} & \hline \text { PIPE } \\ & \text { SIZE } \end{aligned}$	SLOPE	$\begin{aligned} & \text { Q full } \\ & \mathrm{ft}^{\wedge} 3 / \mathrm{s} \end{aligned}$	$\begin{gathered} \hline \text { V full } \\ \mathrm{ft} / \mathrm{s} \\ \hline \end{gathered}$
To PSDS-3 (IN\#1)	DCB-54	DMH-37	0.17	0.90	0.15	0.15	6.0	6.3	0.96	4.57	0.012	12	0.024	5.98	7.61
	DMH-37	DMH-36	-	-	-	0.15	6.0	6.3	0.96	6.14	0.012	12	0.065	9.84	12.53
	CB-53	DMH-36	0.07	0.90	0.06	0.06	6.0	6.3	0.40	5.23	0.012	12	0.104	12.45	15.85
	CB-52	DMH-36	0.13	0.90	0.12	0.12	6.0	6.3	0.74	5.21	0.012	12	0.058	9.30	11.84
	DMH-36	DMH-35	-	-	-	0.33	6.0	6.3	2.10	7.51	0.012	12	0.049	8.54	10.88
	DMH-35	CDS-8	-	-	-	0.33	6.0	6.3	2.10	5.35	0.012	12	0.019	5.32	6.77
	CDS-8	PSDS-3	-	-	-	0.33	6.0	6.3	2.10	3.34	0.012	12	0.005	2.73	3.48
To PSDE-3 (IN\#2)	DCB-51	DMH-34	0.14	0.90	0.13	0.13	6.0	6.3	0.79	2.70	0.012	12	0.006	2.99	3.81
	DCB-50	DMH-34	0.38	0.90	0.34	0.34	6.0	6.3	2.15	5.19	0.012	12	0.017	5.03	6.41
	DMH-34	CDS-10	-	-	-	0.47	6.0	6.3	2.95	3.51	0.012	18	0.005	8.05	4.55
	CB-49	CDS-10	0.09	0.90	0.08	0.08	6.0	6.3	0.51	2.61	0.012	12	0.009	3.66	4.66
	CDS-10	PSDS-3	-	-	-	0.55	6.0	6.3	3.46	7.33	0.012	18	0.036	21.59	12.22
To PSDE-3 (IN\#2)	BLDG-5	PSDS-3	0.41	0.90	0.37	0.37	6.0	6.3	2.32	4.37	0.012	12	0.010	3.86	4.91

This Page Intentionally Left Blank

APPENDIX C

Soil Evaluation by RJ O’Connell \& Associates, Inc.

This Page Intentionally Left Blank

Soil Evaluation by Northeast Geotechnical, Inc.

This Page Intentionally Left Blank

NロRTHEAST GEロTECHNICAL, INC. Delivering Practical Engineering Solutions

PRELIMINARY
GEOTECHNICAL ENGINEERING STUDIES PROPOSED RESIDENTIAL DEVELOPMENT 121 GROVE STREET
FRANKLIN, MA

Prepared For:
Fairfield Residential
5 Burlington Woods Drive
Burlington MA, 01803

Prepared By:
Northeast Geotechnical, Inc.
166 Raymond Hall Drive
North Attleborough, MA 02760

Project No. O473.00
May 24, 2022

NロRTHEAST GEロTERHNICAL, IND.
Delivering Practical Engineering Solutions

Robert D. Hewitt

Fairfield Residential
5 Burlington Woods Drive
Burlington MA, 01803

SUBJECT: Preliminary Geotechnical Engineering Report
 Proposed Residential Development
 121 Grove Street
 Franklin, MA

Dear Robert:
Northeast Geotechnical, Inc. is pleased to present our preliminary geotechnical engineering report for the proposed residential development project at the subject site. The report summarizes our preliminary opinions about earthwork construction including rock removal, building foundations, and building ground floor slabs. In addition, this report summarizes our preliminary opinions about the general subsurface soil, bedrock and groundwater conditions anticipated to be encountered at the site and soil/bedrock reuse potential. Our services have been performed in accordance with our proposal dated January 14, 2022 and are subject to the limitations and service constraints presented in Appendix A of the enclosed report.

Please note that our preliminary geotechnical engineering conclusions and recommendations presented in this report are intended to assist the project team with preliminary evaluation of the project proposed at the subject site. This report, including the preliminary recommendations presented, is not sufficient for use as the basis for design. Additional geotechnical engineering studies will be required if the project should progress into the design phase.

We have enjoyed working with you on this project and look forward to continuing our involvement during future design and construction phases. If you have any questions or require additional information, please contact Glenn Olson, at 508-274-0887 or at golson@northeastgeotechnical.com.

Sincerely,
Northeast Geotechnical, Inc.

Glenn A. Olson Principal Engineer

James M. Handanyan, P.E. Principal Engineer

TABLE OF CONTENTS

1.0 INTRODUCTION 1
1.1 Current Site Conditions 1
1.2 Proposed Development 1
2.0 SUBSURFACE EXPLORATIONS 2
3.0 LABORATORY TESTING 2
4.0 GENERAL SUBSURFACE CONDITIONS 2
5.0 PRELIMINARY CONCLUSIONS AND RECOMMENDATIONS 4
5.1 General Earthwork 4
5.11 Earthwork 4
5.12 Rock Removal 5
5.2 Building Foundations. 6
5.3 Floor Slabs-on-Grade 6
5.4 Underdrains 6
6.0 ADDITIONAL STUDIES AND SERVICES 7

FIGURES

1 Subsurface Exploration Location Plan
2 Subsurface Exploration Location Plan

APPENDICES

A Limitations and Service Constraints
B Test Pit Logs
C Test Pit Photos
D Soils Laboratory Testing Results

1．0 INTRODUCTION

This report summarizes the results of Northeast Geotechnical＇s preliminary geotechnical engineering studies performed for the proposed residential building project located at 121 Grove Street in Franklin， Massachusetts．We understand that Fairfield Residential is considering a multi－building residential development on a $31 \pm$－acre parcel of land at the site．

A＂Topographic Plan of Land＂，prepared by Alpha Land Surveying \＆Engineering Associates，dated January 9,2005 was provided at the time of our proposal for this study showing the property proposed for development．The plan shows the locations of existing residential type buildings on the site fronting on Grove Street，existing topographical information，limits of wooded areas and wetlands markings．

In addition，a plan was provided entitled＂Site Option \＃3＂，prepared by Allen \＆Major Associates，Inc． （A\＆M），dated November 7， 2017 showing a proposed six building development at the site．Fairfield did not have a project conceptual plan developed at the time of our proposal but indicated that in the future，the proposed site layout and building locations may look similar to the layout shown on A\＆M＇s plan．We developed and performed a subsurface exploration program based on the information available at the time of our proposal．

We were provided an additional plan prior to mobilization to the site for our subsurface exploration program．The plan titled＂Existing Conditions＂，dated May XX，2022，prepared by Guerriere \＆ Halnon，Inc．showed staked test pit locations with existing ground surface elevations along with numbered wetland flags．No updated topographic information was shown on the plan．

1．1 Current Site Conditions

The project site is located on the western side of Grove Street．The eastern portion of the site，in addition to containing existing residential type buildings，appears to contain some open fields，some areas of sparse vegetation and delineated wetlands．Apparent bedrock outcroppings were visible within the open fields．The remainder of the site to the west appears to be heavily wooded and contains numerous apparent bedrock outcroppings．It appears that the delineated wetlands divide the site into three distinct areas for development with the need for two wetlands crossings to be established on site to link the areas together．

The general site grading in the area of proposed development appears to slope in a westerly to easterly direction．Existing site grading in the area of proposed development appears to vary between elevations $325 \pm$ and $335 \pm$ feet in the west to between elevations $265 \pm$ feet and $280 \pm$ feet in the east at Grove Street．

1．2 Proposed Development

RJO＇Connell \＆Associates，Inc．has prepared an undated plan titled＂Conceptual Plan W／Topo＂， drawing number $\mathrm{CP}-1 \mathrm{~A}$ ．This plan shows the proposed project consisting of five residential buildings
and a clubhouse building, paved parking areas, site roadways, wetlands crossings and potential stormwater basins. Existing topographical information along with proposed site grading is also presented. This plan was developed and distributed following completion of our subsurface exploration program. The plan also contains the locations of staked test pits.

2.0 SUBSURFACE EXPLORATIONS

A subsurface exploration program was coordinated and observed by Northeast Geotechnical personnel at the site on May $5 \& 6,2022$. The subsurface exploration program consisted of test pits excavated by Silversmith Excavating Co., Inc. of Tewksbury, Massachusetts. The test pits were excavated using a Takeuchi model TB1 140 rubber track mounted excavator having a $1 \pm$ cubic yard toothed bucket and an $18 \pm$ foot reach.

The soils encountered in the test pits were visually described in the field by Northeast Geotechnical personnel using Burmister's soil descriptions as indicated on the attached test pit logs (Appendix B). Observations of cobbles, boulders, bedrock and groundwater are also presented on the logs. Representative photos of the completed test pits are presented in Appendix C.

Northeast Geotechnical, Inc. prepared a proposed test pit location plan in an effort to gain representative coverage across the site and to assess general subsurface conditions in potential proposed development areas. The plan was forwarded to Fairfield Residential and Shipe Consulting Group who then engaged a surveyor to stake the test pits in the field prior to excavation. The test pits were generally excavated at the staked locations or offset a few feet due to obstructions in the woods.

Existing ground surface elevations shown on the test pit logs were established from the surveyed location stakes or estimated from the existing conditions plan where the test pit was off set from the staked locations. Ground surface elevations and references to elevations made throughout this report should therefore be considered approximate and accurate to the degree implied by the methods used. Test pit locations are shown approximately on the Subsurface Exploration Location Plans attached to this report as Figures 1 and 2.

3.0 LABORATORY TESTING

Laboratory testing was performed on representative samples of soil obtained from the test pits by Thielsch Engineering of Cranston, Rhode Island. Gradation analyses were performed on six representative samples of natural granular soils to assist us in understanding their engineering behavior. The soils laboratory test results are appended to this report (Appendix D).

4.0 GENERAL SUBSURFACE CONDITIONS

Numerous bedrock outcrops were visible throughout the surface of the site. The test pits were excavated at locations which were beyond obvious rock outcroppings observed in the field. Therefore, when estimating anticipated rock excavation quantities, it is important to understand that the bedrock surface undulates between the levels indicated in the test pits and those represented by rock outcroppings.

The general subsurface conditions at the site were assessed based upon the results of the test pit exploration program. In general, the subsurface conditions consisted of a layer of natural topsoil or
topsoil fill overlying a layer of natural subsoil that appeared absent in the areas of existing fill. These layers were followed by some granular fill and then natural sand with various quantities of gravel and silt on the eastern portion of the site.

Natural, bouldery glacial till appeared to underly the natural sands on the eastern portion of the site and underly the topsoil and subsoil over much of the site to the west and in particular with the wooded areas.

The test pits terminated in apparent clustered boulders or on apparent bedrock in thirteen of the nineteen test pits observed. Groundwater and/or mottling, indicative of potential seasonal high groundwater was observed in eleven of the nineteen test pits. Greater details about the observed subsurface conditions are presented on the test pit logs contained in Appendix B and in the following paragraphs

The natural topsoil and topsoil fill were generally observed to be approximately $0.4 \pm$ to $1 \pm$ foot thick. Natural Subsoil encountered at the site below the natural topsoil extended approximately $1.5 \pm$ to $3.5 \pm$ feet below ground surface. Descriptions of the topsoil, topsoil fill and subsoil are presented in the test pit logs.

Four of the test pits encountered fill soils beneath topsoil fill at the site (TP-5, TP-7, TP-12 and TP13). The fill was observed to extend to depths of approximately $2.5 \pm$ to $4.5 \pm$ feet below ground surface. The observed fill appeared to consist of primarily granular soils which would be potentially suitable for reuse provided these soils can be maintained at a suitable moisture content and in a non-frozen condition. There was some roots and topsoil mixed in with the fill however, which should be culled out prior to reuse.

Natural granular soils described on the logs as natural gravelly sand or natural sand and gravel as well as natural sand and silt were encountered in seven of the test pits (TP-1, TP-2, TP-5, TP-12, TP-13, TP-14 and TP-15). These natural granular soils were observed to extend to depths ranging from approximately $4 \pm$ to $9 \pm$ feet below ground surface where encountered. The natural gravelly sand/sand and gravel generally consisted of fine to coarse sand with $20 \pm$ to $50 \pm$ percent fine to coarse gravel, and less than $10 \pm$ percent silt with cobbles and boulders. The natural sand and silt (TP-1 and TP-2) generally consisted of fine and/or fine to medium sand with $35 \pm$ to $50 \pm$ percent silt and less than $10 \pm$ percent fine to coarse gravel.

Glacial till soil, also considered a natural granular soil, was encountered in sixteen of the nineteen test pit excavations performed. The soil is generally comprised of a heterogeneous mixture of sand, gravel, and silt to clay size particles (fines) interspersed with cobbles and boulders. In general, the glacial till soil is comprised of approximately $15 \pm$ to greater than $50 \pm$ percent fines. Cobbles and boulders were encountered within the glacial till deposit as indicated on the test pit logs.

Ten of the nineteen test pits terminated on an apparent bedrock surface while and additional three terminated on either tightly nested boulders or possible bedrock. Depths to these refusal conditions in the test pits varied from approximately $1 \pm$ to $8 \pm$ feet below ground surface.

Groundwater was observed in eight of the test pits excavated at depths of approximately $2 \pm$ to $8 \pm$ feet below ground surface. In some instances, mottling, which may be an indication of seasonally higher groundwater levels was observed above groundwater levels as shown on the test pit logs. In addition,
apparent perched groundwater, which was observed to be flowing into some of the test pits within the subsoil layer was observed.

Groundwater levels will fluctuate due to variations in temperature, precipitation and other factors. Infiltrating storm water runoff or groundwater could become perched especially within or on top of the siltier soils or bedrock. As a result, groundwater conditions encountered during construction and during the design life of the project are likely to be different than reported herein.

5.0 PRELIMINARY CONCLUSIONS AND RECOMMENDATIONS

The following geotechnical engineering preliminary conclusions and recommendations are presented subject to the attached Statement of Limitations in Appendix A.

5.1 General Earthwork

The following subsections provide preliminary geotechnical engineering recommendations for planning and performing earthwork at the site given the subsurface conditions encountered.

5.11 Earthwork

The topsoil, topsoil fill, subsoil, and existing fill are not considered suitable to support foundations or slabs on grade for the proposed building areas and are therefore collectively referred to as unsuitable materials. These unsuitable materials should be removed to a minimum of 10 feet beyond the buildings' exterior wall lines or within the limits defined by a one horizontal to one vertical line extending down and out from bottom of proposed exterior foundations to firm natural ground, whichever is greater. Firm natural ground is considered the natural granular soils at the site below the unsuitable materials.

Trees can be cut flush with ground surface and natural topsoil and subsoil may remain in place beneath landscaped areas and proposed pavement areas where the distance between the top of the topsoil layer and proposed finish grade is at least four feet provided these materials do not become overly disturbed. Topsoil fill and existing fill should be removed from proposed pavement areas to firm natural ground.

We anticipate the on-site materials to be used in performing the required fills on the site will consist of natural granular soils and blasted/processed bedrock. The natural silty sand and the natural glacial till soils at the site generally contain from $15 \pm$ to greater than $50 \pm$ percent silt. The elevated silt content on-site soils will be considered suitable for reuse as structural fill only if they can be properly placed and compacted at a suitable moisture content. These silty soils should be placed and compacted to their required degree of compaction the same day they are excavated unless they are excavated in a wet condition. Dry stockpiled soils may become unsuitable for reuse if they become too wet or frozen.

Boulders greater than eight inches in size will be encountered in the excavated glacial till soils and will be encountered when removing blasted bedrock. Boulders greater than eight inches in size should not be used in twelve-inch-thick lifts of structural fill. Rather, the chosen contractor may decide it is economically feasible to crush or otherwise process over-sized boulders along with the blasted bedrock to create a product which is suitable for use as structural fill or possibly as base course sand and gravel.

Structural fill should be placed in controlled compacted lifts. Thickness of lifts of structural fill will be a function of compaction equipment used. Fill placed in trenches, compacted using hand operated
vibratory plate or roller compactors, should be placed in maximum 6 -inch-thick lifts. Structural fill placed in open areas, compacted using large self-propelled ride on vibratory compactors, may be placed in maximum 12-inch-thick lifts.

Each lift of soil fill placed within the proposed building areas should be compacted to at least 95 percent of the fill material's maximum dry density in accordance with ASTM D-1557. In proposed pavement areas, structural soil fill should be compacted to at least 90 percent of the fill material's maximum dry density in accordance with ASTM D-1557 except for the base course layer which should be compacted to at least 95 percent. Besides meeting the minimum compaction requirements, each lift of fill should be compacted to a firm and stable condition.

Exposed natural silty sand and glacial till soils at proposed foundation and slab subgrade elevations should be protected from disturbance resulting from exposure to moisture and construction traffic as well as frost penetration. Protection of the subgrade soils should be performed from the time of excavation to subgrade elevation to the time of the foundations are adequately backfilled and the building is enclosed and heated. Subgrade soils that are not adequately protected will need to be excavated and replaced if they become disturbed or frozen. Consideration should be given to including a six-inch minimum thick layer of $3 / 4$-inch crushed stone at proposed bottom of footing elevations where foundations are anticipated to terminate in soils.

5.12 Rock Removal

Northeast Geotechnical anticipates a rock removal effort will be necessary both during mass cut operations and during trenching for utilities and foundations and other appurtenances on the site. Rock should be removed in a controlled manner to both mitigate on- and off-site effects. The chosen contractor should also consider producing a product which is suitable for reuse on-site. Blasting of bedrock produces ground induced vibrations and air blast overpressures which may have a detrimental effect on nearby structures and effect occupants.

Ground vibration and air blast overpressure limits at adjacent off-site buildings as well as at property lines should be maintained below the limits specified in Massachusetts 527 CMR 13.00: Board of Fire Protection Regulations - Explosives. Maximum allowable blast induced vibrations are established in the referenced publication in the form of frequency dependent peak particle velocities.

Pre-blast surveys of off-site buildings within 250 feet of the blasting area should be performed in accordance with The Massachusetts 527 CMR 13.00: State Board of Fire Prevention Regulations Explosives. Pre-blast surveys should be the responsibility of the contractor. This survey will develop a record of existing conditions prior to blasting which may assist in defending blast damage claims.

In general, competent rock should be removed to the following minimum depths:

- Twelve inches (12") below design bottom elevation of foundations,
- Six inches (6 ") below bottom elevation of utility lines and utility structures,
- Eighteen inches ($18^{\prime \prime}$) below building floor slab elevations, and
- Twenty-four inches (24 ") below pavement surface and landscaping areas.

During production blasting, the blasting contractor should be required to cover blast areas with mats to limit fly rock. Seismic blast monitoring should be performed in accordance with The State of

Massachusetts' and local regulations for each blast. The contractor and the on-site geotechnical engineering representative should provide monitoring of the blasts and evaluate compliance with specified vibration and air blast overpressure criteria.

Generally, we recommend that fill below structures be placed in controlled, compacted lifts no thicker than twelve inches. Boulder size is generally limited to two thirds the loose lift thickness which in this case will be eight inches. Blasting should therefore attempt to produce a maximum rock size of eight inches. Otherwise, the rock produced by blasting as well as oversized boulders that are otherwise excavated should be processed and crushed to produce a well-graded crushed rock with a maximum particle size of less than 8 -inches for use in 12 -inch lifts of compacted structural fill and less than 4 inches for use in trench backfills where fill is compacted in 6-inch lifts.

5.2 Building Foundations

It is our preliminary opinion that proposed buildings to be constructed on this site should be able to be designed to be supported using spread footing foundations provided the building and foundation subgrades are properly prepared. Spread footings should bear directly on the natural granular soils or on properly placed and compacted structural fill over the natural glacial till soils. An allowable bearing capacity of at least two tons per square foot (2 TSF) appears feasible based on our preliminary exploration program.

Bedrock encountered at or above bottom of footing elevation should be excavated to at least 12 inches below bottom of footing elevation and be replaced with compacted $3 / 4$-inch crushed stone or 4 -inch minus processed rock. If the contractor elects to compact the crushed stone or processed rock with a vibratory plate compactor, the lift thickness should be limited to a maximum of 6 inches. In other words, at least two lifts will be required to reach bottom of footing elevation above excavated rock.

If in the final design, it is anticipated that all foundations for a particular building will extend to competent bedrock, a higher bearing capacity can be recommended. Recommendations can be presented during design to prepare foundation subgrades to be supported on competent rock.

5.3 Floor Slabs-on-Grade

Slab-on-grade construction should be considered suitable provided the building areas are properly prepared as recommended herein and as part of future design phase studies. We anticipate the floor slabs-on-grade will bear on a combination of natural granular soils, controlled compacted lifts of structural fill or above a shallow bedrock surface. A base course layer of "clean sand and gravel is generally recommended for slab support.

5.4 Underdrains

We anticipate flow of groundwater (perched or otherwise) may occur near surface at the interface between the natural subsoil and glacial till, or at the surface of competent bedrock. The need for underdrains to protect slabs on grade and pavement areas should be assessed as part of design phase studies and will be dependent upon the design grading plans. Additional underdrains may need to be added during construction based on the observed conditions encountered during earthwork activities.

6.0 ADDITIONAL STUDIES AND SERVICES

Northeast Geotechnical, Inc. should be retained to review the proposed design grading and layout plans for the project. Then, we can develop a design phase scope of services to complete our recommendations for use in design and earthwork construction. We will complete our recommendations for allowable foundation bearing pressures, slab base course, site seismic classification, flexible pavement design, need for underdrains and additional earthwork recommendations. We anticipate there may be a need for additional subsurface explorations given the conditions encountered in the subsurface explorations performed to date and the limited overall site and proposed building area coverage.

Northeast Geotechnical, Inc. should also be retained to provide construction observation and soil testing services during the earthwork construction phase of the project. The purpose of our participation is twofold: to observe that the contractor performs earthwork in general compliance with the recommendations presented in this report, and to verify our design assumptions in the field. In addition, we can provide engineering input in a timely manner if subsurface conditions are found to vary from those anticipated prior to construction and warrant a design change or a change in earthwork procedures.

We also recommend Northeast Geotechnical be afforded the opportunity to review the foundation and site plans, and earthwork specifications prior to bidding for construction to see that our recommendations have been properly interpreted and included.

FIGURES

APPENDIX A

Limitations and Service Constraints

LIMITATIONS AND SERVICE CONSTRAINTS Geotechnical Engineering Consulting Services

The opinions, conclusions and recommendations presented in this report are based upon the scope of services, information obtained through the performance of the services, and the schedule as agreed upon by Northeast Geotechnical, Inc. and the party for whom this report was originally prepared. This report is an instrument of professional service and was prepared in accordance with the generally accepted standards and level of skill and care under similar conditions and circumstances established by the geotechnical consulting industry. No representation, warranty, or guarantee, express or implied, is intended or given. To the extent that Northeast Geotechnical, Inc. relied upon any information prepared by other parties not under contract to Northeast Geotechnical, Inc. , Northeast Geotechnical, Inc. makes no representation as to the accuracy or completeness of such information. This report is expressly for the sole and exclusive use of the party for whom this report was originally prepared and/or other specifically named parties have the right to make use of and rely upon this report. Reuse of this report or any portion thereof for other than its intended purpose, or if modified, or if used by third parties, shall be at the user's sole risk.

Furthermore, nothing contained in this document shall relieve any other party of its responsibility to abide by contract documents and applicable laws, codes, regulations, or standards.

Subsurface Explorations and Testing

Results of any observations, subsurface exploration or testing, and any findings presented in this report apply solely to conditions existing at the time when Northeast Geotechnical, Inc.'s exploratory work was performed. It must be recognized that any such observations and exploratory or testing activities are inherently limited and do not represent a conclusive or complete characterization. Conditions in other parts of the project site may vary from those at the locations where data were collected and conditions can change with time. Northeast Geotechnical, Inc.'s ability to interpret exploratory and test results is related to the availability of the data and the extent of the exploratory and testing activities.

The findings, conclusions and recommendations submitted in this report are based, in part, on data obtained from subsurface borings, test pits, and specific, discrete sampling locations. The nature and extent of variation between these test locations, which may be widely spaced, may not become evident until construction. If variations are subsequently encountered, it will be necessary to reevaluate the conclusions and recommendations of this report.

Correlations and descriptions of subsurface conditions presented in boring logs, test pit logs, subsurface profiles, and other materials are approximate only. Subsurface conditions may vary significantly from those encountered in borings and sampling locations and transitions between subsurface materials may be gradual or highly variable.

Conditions at the time water level measurements and other subsurface observations were made are presented in the boring logs or other sampling forms. This field data has been reviewed and interpretations provided in this report. However, groundwater levels may be variable and may fluctuate due to variation in precipitation, temperature, and other factors. Therefore, groundwater levels at the site at any time may be different than stated in this report.

Review

In the event that any change in the nature, design, or location of the proposed structure(s) is planned, the conclusions and recommendations in this report shall not be considered valid unless the changes are reviewed and the conclusions and recommendations of this report are modified or verified in writing.

Northeast Geotechnical, Inc. should be provided the opportunity for a general review of final design plans and specifications to assess that our recommendations have been properly interpreted and included in the design and construction documents.

Construction

To verify conditions presented in this report and modify recommendations based on field conditions encountered in the field, Northeast Geotechnical, Inc. should be retained to provide geotechnical engineering services during the construction phase of the project. This is to observe compliance with design concepts, specifications, and recommendations contained in this report, and to verify and refine our recommendations as necessary in the event that subsurface conditions differ from those anticipated prior to the start of construction.

APPENDIX B

Test Pit Logs

APPENDIX C

Test Pit Photos

NORTHEAST GEOTECHNICAL, INC.

Photograph \#1

Description of Photograph:
Test Pit TP-1

Photograph Taken By:

Christian Rice dated 5-6-2022

Photograph \#2
Description of Photograph:
Test Pit TP-2

Photograph Taken By:
Christian Rice dated 5-6-2022

NORTHEAST GEOTECHNICAL, INC.

Photograph \#3

Description of Photograph:
Test Pit TP-3

Photograph Taken By:

Christian Rice dated 5-6-2022

Photograph \#4

Description of Photograph:

Test Pit TP-4

Photograph Taken By:
Christian Rice dated 5-6-2022

NORTHEAST GEOTECHNICAL, INC.

Photograph \#5

Description of Photograph:

Test Pit TP-5

Photograph Taken By:

Christian Rice dated 5-5-2022

Photograph \#6

Description of Photograph:
Test Pit TP-6

Photograph Taken By:
Christian Rice dated 5-5-2022

NORTHEAST GEOTECHNICAL, INC.

Photograph \#7

Description of Photograph:
Test Pit TP-7

Photograph Taken By:
Christian Rice dated 5-5-2022

Photograph \#8

Description of Photograph:
Test Pit TP-8

Photograph Taken By:
Christian Rice dated 5-5-2022

NORTHEAST GEOTECHNICAL, INC.

Photograph \#10

Description of Photograph:

Test Pit TP-10

Photograph Taken By:
Christian Rice dated 5-5-2022

SIEVE SIZE OR DIAM ETER	PERCENT FINER	SPEC.* PERCENT	PASS? (X=NO)
$2^{\prime \prime}$	100.0		
$11 / 2^{\prime \prime}$	94.4		
$1 "$	82.3		
$3 / 4^{\prime \prime}$	76.4		
$1 / 2^{\prime \prime}$	69.1		
$3 / 8^{\prime \prime}$	65.3		
$\# 4$	57.0		
$\# 10$	49.5		
$\# 20$	33.7		
$\# 40$	17.9		
$\# 60$	12.4		
$\# 100$	9.2		
$\# 200$	5.9		

(no specification provided)

Source of Sample: Test Pits Sample Number: TP-13 / S-1

Depth: 3-6'

Soil Description Brown poorly graded sand with silt and gravel		
$\mathrm{PL}=\mathrm{NP}$	Atterberg Limits $\mathrm{LL}=\mathrm{NV}$	$\mathrm{Pl}=\mathrm{NP}$
$\begin{aligned} & D_{90}=32.7456 \\ & D_{50}=2.0716 \\ & D_{10}=0.1746 \end{aligned}$	Coefficients $D_{85}=27.9630$ $D_{30}=0.7228$ $C_{u}=35.64$	$\begin{aligned} & \mathrm{D}_{60}=6.2227 \\ & \mathrm{D}_{15}=0.3394 \\ & \mathrm{C}_{\mathrm{C}}=0.48 \end{aligned}$
USCS $=$ SP-SM	Classification AASHTO= Remarks	A-1-a

Atterberg Limits

PL= NP
$\begin{array}{ll}D_{90}= & 32.7456 \\ D_{50}= & 2.0716\end{array}$

USCS $=$ SP-SM

Classification

Remarks

Thielsch Engineering Inc.
Cranston, RI

Date: 05.10.22

SIEVE SIZE OR DIAM ETER	PERCENT FINER	SPEC.* PERCENT	PASS? (X=NO)
$3^{\prime \prime}$	100.0		
$2^{\prime \prime}$	93.1		
$11 / 2^{\prime \prime}$	89.1		
$1 "$	86.4		
$3 / 4^{\prime \prime}$	81.5		
$1 / 2^{\prime \prime}$	76.3		
$3 / 8^{\prime \prime}$	73.0		
$\# 4$	67.1		
$\# 10$	59.8		
$\# 20$	50.5		
$\# 40$	42.1		
$\# 60$	33.5		
$\# 100$	24.4		
$\# 200$	14.6		

(no specification provided)

Source of Sample: Test Pits Sample Number: TP-17 / S-1

Depth: 3-5'

Soil Description		
Brown silty sand with gravel		
$\mathrm{PL}=\mathrm{NP}$	Atterberg Limits $\mathrm{LL}=\mathrm{NV}$	$\mathrm{Pl}=\mathrm{NP}$
$\begin{aligned} & D_{90}=41.1811 \\ & D_{50}=0.8117 \\ & D_{10}= \end{aligned}$	Coefficients $D_{85}=23.1814$ $D_{30}=0.2058$ $C_{u}=$	$\begin{aligned} & D_{60}=2.0371 \\ & D_{15}=0.0770 \\ & C_{c}= \end{aligned}$
USCS $=$ SM	Classification AASHTO $=$ Remarks	A-1-b

Atterberg Limits
$P L=N P$
$D_{90}=41.1811$
$D_{50}=0.8117$
$D_{10}=$

USCS $=\quad$ SM

AASHTO $=$ A-1-b
Remarks

Thielsch Engineering Inc.
Cranston, RI

Date: 05.10.22

This Page Intentionally Left Blank

APPENDIX D

Stormwater Pollution Prevention Plan (SWPPP) (To be submitted prior to construction)

This Page Intentionally Left Blank

APPENDIX E

Operation and Maintenance Plan (O \& M) with Long Term Pollution Prevention Plan (LTPPP)

This Page Intentionally Left Blank

Operation and Maintenance Plan
 Long Term Pollution Prevention Plan (LTPPP)
 \& Illicit Discharge Statement

Fairfield at Grove Street 121 Grove Street Franklin, Massachusetts

Prepared for:
Fairfield Grove Street, LLC 30 Braintree Hill Park, Suite 105
Braintree, MA 02184
Prepared by:
R.J. O'Connell \& Associates, Inc.
80 Montvale Ave, Suite 201
Stoneham, MA 02180

Date: December 18, 2023

This Page Intentionally Left Blank

TABLE OF CONTENTS

Introduction

Section 1 - Stormwater Management System - Operations and Maintenance
Section 2 - Long Term Pollution Prevention Plan (LTPPP)
A. Materials Covered
B. Materials Management Practices
C. Spill Prevention and Response Procedures

Section 3 - Illicit Discharge Statement
Appendices
Appendix A - Maintenance and Inspection Forms
Activity Guide
Comprehensive Annual Evaluation and Inspection Report
Annual Training Signoff Sheet
Weekly Inspection Checklist
Monthly Inspection Checklist
Quarterly Inspection Checklist
Semi-Annual Inspection Checklist
Spill and Leak History

Appendix B - 310 CMR 40.00 Subpart C: Notification of Releases and Threats of Release of Oil and Hazardous Materials

Appendix C - C-2A - Grading and Drainage Plan; C-2B - Grading and Drainage Plan.

Appendix D - CDS Stormwater Treatment Unit Operation and Maintenance Guidelines

This Page Intentionally Left Blank

Operations and Maintenance Plan

INTRODUCTION

This Operations and Maintenance Plan has been prepared to ensure that the stormwater management system implemented at Fairfield at Grove Street (121 Grove Street located in Franklin, MA) functions as designed and to develop and carry out suitable practices for source control and pollution prevention. It describes the various components of the stormwater management system, identifies the inspection and maintenance tasks to be undertaken after construction is complete, and establishes a schedule for implementing these tasks to ensure the proper, long-term operation of the system.

SECTION 1 - STORMWATER MANAGEMENT SYSTEM- OPERATION AND MAINTENANCE

The objectives of the stormwater management system are to effectively control and treat stormwater runoff from the site in accordance with the Massachusetts Stormwater Management Standards. To accomplish this objective, the following Best Management Practices (BMP's) are included in the stormwater management system:

BMPs

- Installation and maintenance of the catch basins with deep sumps and hoods to reduce the discharge of sediment and pollutants.
- Installation of inline type hydrodynamic particle separator units for removal of oil, grease and suspended solids.
- Installation of subsurface infiltrations system to provide the required recharge of groundwater.
- Installation of surface infiltration basin to provide the required recharge of groundwater.
- Installation of subsurface detention systems to provide mitigation of peak rates of runoff.
- Rip rap splash pads at storm drain outlets to provide energy dissipation and reduce flow velocity and scour potential.

In consideration of the foregoing, it is the ongoing responsibility of the landowner, their successors and assignees, to adequately maintain the on-site stormwater management BMPs. Adequate maintenance is herein defined as good working condition so that these BMPs are performing their design functions.

Based on this, the landowner, their successors, and assignees are required to create a Pollution Prevention Team (PPT) that will be responsible for implementing this Operations and Maintenance Plan.

Upon transfer of ownership of the property, the landowner is required to notify the new owner of the presence of the stormwater management system and the requirements of this Operations and Maintenance Plan.

It is anticipated the costs for maintenance to be between $\$ 10,000$ and $\$ 15,000$ annually.

Applicant: Fairfield Grove Street, LLC

Property Information

Address: 121 Grove Street
Franklin, MA 02038
Applicant and Pollution Prevention Team Leader
Applicant Name: Fairfield Grove Street, LLC
Applicant Contact: Robb Hewitt
Title: Applicant
Office Phone: (781) 881-2300
Email: rhewitt@ffres.com
Responsibilities: Coordinate all aspects of the Operations and Maintenance Plan, coordinate and hire the other Pollution Prevention team members in order to conduct inspections, keep all records, and coordinate with contractors for maintenance and repair of the stormwater management system.

Spill Prevention \& Control Contractor

The following contacts shall be notified only in those instances identified within 310 CMR 40.00: Massachusetts Contingency Plan-Subpart C (see the Long-Term Pollution Prevention Plan, Appendix A).:

Primary Contact: TBD
Office Phone:

Emergency Contact: TBD
Company Name:
Contact Name:
Emergency Phone:
Consultant Contact: TBD
Company Name:
Contact Name:
Phone:
Department of Environmental Protection (DEP)
Hazardous Waste Incident Response Group
Contact Name:
Phone: 617-792-7653

Municipal Contacts

Franklin Fire Department
Contact Name: James McLaughlin, Chief
Phone: (508) 528-2323
Franklin Engineering Department
Contact Name: Mike Maglio, Town Engineer
Phone: (508) 520-4910
Franklin Conservation Commission
Contact Name: Breeka Li Goodlander, CWS, Conservation Agent
Phone: (508) 520-4847
Other Pollution Prevention Team Members
Member: Qualified Engineering and/or Environmental Consulting Firm(s).
Responsibilities: Conduct scheduled inspections, maintain records, advise the Team Leader of maintenance needs, ensure inspection maintenance and repairs are completed and keep and maintain all records and inspection reports.

Company Name(s): TBD
Address:
Office Phone:

Team Member Training

The Pollution Prevention Team Leader will coordinate an annual in-house training session with the qualified Engineering and/or Environmental Consulting Firm to discuss the Operations and Maintenance Plan, ongoing inspection and maintenance and preventative maintenance procedures.

Annual training session will generally include the following:

- Discuss the Operations and Maintenance Plan
o What it is- identify potential sources of stormwater pollution and methods of reducing or eliminating that pollution
0 What it contains- emphasize good housekeeping measures and location of potential pollution sources.
o Pollution Prevention Team- introduce the team and explain their responsibilities, explain the operations and continuous monitoring of the stormwater management system and encourage input and assistance from all.
- Review and explain the storm drainage system, how it works and its components, note the receiving resource area in which the storm drainage system discharges into and the role each component plays.
- Emphasize the importance of maintaining current and up-to-date inspection reports and maintenance records of BMPs. Documentation shall include any changes to the O\&M Plan's procedures to accommodate changes and revisions to BMPs.

The components of the stormwater management system must be inspected, monitored and maintained in accordance with the following in order to ensure that the on-site stormwater management BMPs are functioning as designed. Routine inspection and proper maintenance of these individual components is essential to providing the long-term enhancement of both the quality and quantity of the runoff from the properties.

Sweeping and Site Clean-Up:

Routine sweeping of paved areas is an effective method to provide important nonpoint source pollution control and will be performed by mechanical sweepers. Most stormwater pollutants travel with the suspended solids contained in the stormwater runoff and regular sweeping will help reduce a portion of this load. Sweeping, especially during the period immediately following winter snowmelt (March/April) when road sand and other debris has accumulated on the pavement, will capture a peak sediment load before spring rains wash residual sand from winter applications into nearby resource areas.

Inspection: Paved areas will be inspected for litter on a weekly basis and picked up and disposed of immediately.

Maintenance: All parking areas, sidewalks, driveways and other impervious surfaces (except roofs) will be swept clean of sand, litter, trash, etc. on a monthly basis. A log of land/lot sweeping and cleanup will be kept. Housekeeping concerns noted by store leadership, PPT members, guests and others will be noted and acted upon. Separate cleanup services will be conducted at least twice a year, once between November 14 and December 15 (after leaf fall) and once during the month of April (after snow melt). Additional cleanup services will be conducted as necessary.

Deep Sump Catch Basins:

Stormwater runoff from pavement areas is directed to catch basins via site grading and curbing. Catch basins are equipped with a deep (4 ft) sump and a hood. The sumps are designed to capture sediment and coarse particles and the hoods prevent hydrocarbons and other floatable debris from entering the drainage system. To ensure proper functioning of catch basins, each will be inspected and maintained as follows:

Inspection: Beginning of March, June, September and December and after major storm events. Structural damage and other malfunctions are to be noted and reported. Basins shall also be inspected during every major rain event (3.1 inches or greater in 24 hours) to ensure the grates are not clogged and are functioning properly.

Maintenance: Catch basins to be pumped and cleaned at a minimum once a year in the springtime, or when sump is half full. Cleaning shall be performed by a licensed contractor. Sediment and hydrocarbons will be properly handled and legally disposed of off-site in accordance with local, state, and federal guidelines and regulations. Any structural damage to catch basins and/or castings will be repaired upon discovery.

Hydrodynamic Oil/Particle Separators:

Hydrodynamic oil/particle separators are precast concrete structures designed to treat incoming stormwater runoff by removing suspended solids, thereby preventing the transfer of pollutants downstream. The oil/particle separators on the site are located and designed to collect and treat stormwater runoff prior to discharge. Oil/particle separators will be inspected and maintained as follows:

Inspection: Inspect in accordance with manufacturer's recommendations and requirements per Appendix C. At a minimum, hydrodynamic particle separators shall be inspected in March and September.

Maintenance: Jet vacuumed and power washed by a licensed contractor at least once per year or as recommended by the manufacturer. Accumulated sediment and hydrocarbons will be disposed of in accordance with applicable local, state, and federal guidelines and regulations. Oil/particle separators will also be cleaned when the level of sediment depth is within 12 inches of the outlet invert or as recommended by the manufacturer.

Subsurface Infiltration System

A subsurface infiltration system consists of either plastic polymer chambers or 5 to 10 foot diameter, perforated, corrugated metal pipes surrounded in crushed stone underground that temporarily retains a portion of stormwater runoff and allows it to infiltrate into the ground thereby recharging the groundwater. Infiltration systems require a minimum or 44% pretreatment prior to accepting stormwater runoff to prevent sedimentation.

Inspection: Inspect inlets twice annually for sediment accumulation, trash and clogging. Remove any sediment and/or debris buildup at the inlet and outlet of the system during each inspection.

Maintenance: The subsurface infiltration system shall be maintained once a year. Remove any debris that might clog the system.

Subsurface Detention System

A subsurface retention system consists of plastic polymer chambers in crushed stone underground that temporarily detains a portion of stormwater runoff prior to discharging it to an infiltration system or an outlet to a designated design point.

Inspection: Inspect inlets twice annually for sediment accumulation, trash and clogging. Remove any sediment and/or debris buildup at the inlet and outlet of the system during each inspection.

Maintenance: The subsurface detention system shall be maintained once a year. Remove any debris that might clog the system.

Drainage Culvert:

Inspection: Culvert must be inspected annually. Check both ends of culvert for sediment and debris accumulation and any structural damage.

Maintenance: Accumulated sediment will be removed by methods that do not impact the wetlands and disposed in accordance with applicable local, state and federal guidelines and regulations.

Rip Rap Splash Pads and Outfall Structure

Rip rap splash pads provide energy dissipation and reduce scour at the outlet structure.
Inspection: inspect rip rap splash pads and outfall structure regularly, especially after major rainfall events

Maintenance: Note and repair any erosion or low spots on the splash pad.

Steep Slopes

Steep slopes shall be considered any slopes greater that 3:1.
Inspection: inspect steep slopes on the site regularly, especially after major rainfall events

Maintenance: Note and repair any slopes that are unstable, eroding and have any areas of bare soil. If there are only minor areas of erosion, fill in small rills or gullies with topsoil. If bare soil areas occur topsoil should be added, compacted and seed/mulched with appropriate seed mix.

Please refer to Appendix A for the Inspection Forms, which are to be used by the Pollution Prevention Team member responsible for conducting the scheduled inspections.

SECTION 2 - LONG TERM POLLUTION PREVENTION PLAN (LTPPP)

A. MATERIALS COVERED

The following materials or substances are expected to be present onsite after construction:
Cleaning solvents Petroleum based products
Detergents Pesticides/Insecticides
Paints/Solvents Fertilizers/Herbicides
Acids Contaminated Soil
Solid Waste

B. MATERIALS MANAGEMENT PRACTICES

The following are the material management practices that will be used to reduce the risk of spills or other accidental exposure of materials and substances to stormwater runoff. The Pollution Prevention Team Leader will be responsible for ensuring that these procedures are followed:

Good Housekeeping

The following good housekeeping practices will be followed onsite after construction:
a) An effort will be made to store only enough products required to do the job.
b) All materials stored onsite will be stored in a neat, orderly manner and, if possible, under a roof or in a containment area. At a minimum, all containers will be stored with their lids on when not in use. Drip pans shall be provided under all dispensers.
c) Products will be kept in their original containers with the original manufacturer's label in legible condition.
d) Substances will not be mixed with one another unless recommended by the manufacturer.
e) Whenever possible, all of a product will be used up before disposing of the container.
f) Manufacturer's recommendations for proper use and disposal will be followed.
g) A Pollution Prevention Team Member will be responsible for daily inspections to ensure proper use and disposal of materials.
h) The storage of all deicing materials on the site shall be covered and not be exposed to precipitation.

1. Hazardous Substances

These practices will be used to reduce the risks associated with hazardous substances. Material Safety Data Sheets (MSDS's) for each product with hazardous characteristics that are used on the property will be obtained and used for the proper management of potential wastes that may result from these products. An MSDS will be posted in the immediate area where such product is stored and/or used and another copy of each MSDS will be maintained on-site, in the management office. Each employee who must handle a hazardous substance will be instructed on the use of MSDS sheets and the specific information in the applicable MSDS for the product he/she is using, particularly regarding spill control techniques.
a) Products will be kept in original containers with the original labels in legible condition.
b) Original labels and MSDS's will be procured and used for each product.
c) If surplus product must be disposed of, the manufacturer's and local/state/federal required methods for proper disposal must be followed.

2. Hazardous Waste

It is imperative that all hazardous waste be properly identified and handled in accordance with all applicable hazardous waste standards, including the storage, transport and disposal of the hazardous wastes. There are significant penalties for the improper handling of hazardous wastes. It is important that the Pollution Prevention Team Leader seeks appropriate assistance in making the determination of whether a substance or material is a hazardous waste. For example, hazardous waste may include certain hazardous substances, as well as pesticides, paints, paint solvents, cleaning solvents, contaminated soils, and other materials, substances or chemicals that have been discarded (or are to be discarded) as being out-of-date, contaminated, or otherwise unusable. The Pollution Prevention Team Leader is responsible for ensuring that all Pollution Prevention Team Members are instructed as to these hazardous waste requirements as well as that the requirements for handling and disposal are being followed.

3. Product Specific Practices

The following product specific practices will be followed on the job site:

a) Petroleum Products

Petroleum products will be stored in tightly sealed containers which are clearly labeled. Petroleum storage tanks shall be located a minimum of 100 linear feet from wetland resource areas, drainage ways, inlets and surface waters unless stored within a building. Any petroleum storage tanks stored onsite will be located within a containment area that is designed with an impervious surface between the tank and the ground. The secondary containment must be designed to provide a
containment volume that is equal to 110% of the volume of the largest tank. Drip pans shall be provided for all dispensers. Any asphalt substances used onsite will be applied according to the manufacturer's recommendations. The location of any fuel tanks and/or equipment storage areas must be identified on the Erosion Control Plan by the Contractor once the locations have been determined.
b) Fertilizers, Herbicides, Pesticides, and Insecticides

Fertilizers, herbicides, pesticides, and insecticides will be applied only in the minimum amounts recommended by the manufacturer. Once applied, they will be utilized so as to limit exposure to stormwater. Storage will be in a covered shed. The contents of any partially used bags or containers will be transferred to a sealable plastic bin to avoid spills.

Fertilizers shall not be applied within wetland buffer zones or other resource areas. Refer to Drawing C-2, Grading and Drainage Plan, for location of resource areas and buffer zones.
c) Paints, Paint Solvents, and Cleaning Solvents

All containers will be tightly sealed and stored when not in use. Excess paint and solvents will not be discharged to the storm sewer system but will be properly disposed of according to manufacturer's instructions or state and federal regulations.

4. Solid Waste

All waste materials will be collected and stored in an appropriately covered container and/or securely contained metal dumpster rented from a local waste management company which must be a licensed solid waste management company. The dumpster will comply with all local and state solid waste management regulations.

All trash and debris from the site will be deposited in dumpsters. The dumpsters will be emptied a minimum of once per week or more often if necessary. All personnel will be instructed regarding the correct procedures for waste disposal.

All waste dumpsters and roll-off containers shall be located in an area where the likelihood of the containers contributing to stormwater discharges is negligible.
5. Contaminated Soils

Any contaminated soils resulting from spills of hazardous substances or oil shall be contained and cleaned up immediately in accordance with the procedures given in the Materials Management Plan and in accordance with applicable state and federal regulations. If there is a release, it should be reported as a spill, if it otherwise meets the requirements for a reportable spill.

C. SPILL PREVENTION AND RESPONSE PROCEDURES

The Pollution Prevention Team Leader will train all personnel in the proper handling and cleanup of spilled hazardous substances or oil. No spilled hazardous substances or oil will be allowed to come in contact with stormwater discharges. If such contact occurs, the storm water discharge will be contained on site until appropriate measures in compliance with state and federal regulations are taken to dispose of such contaminated storm water. It shall be the responsibility of the Pollution Prevention Team Leader to be properly trained, and to train all personnel in spill prevention and clean up procedures.

1. In order to prevent or minimize the potential for a spill of hazardous substances or oil to come into contact with stormwater, the following steps shall be implemented:
a) All hazardous substances or oil (such as pesticides, petroleum products, fertilizers, detergents, acids, paints, paint solvents, cleaning solvents, etc.) shall be stored in a secure location, with their lids on, preferably under cover, when not in use.
b) The minimum practical quantity of all such materials shall be kept on site.
c) A spill control and containment kit (containing, for example, absorbent materials, acid neutralizing powder, brooms, dust pans, mops, rags, gloves, goggles, plastic and metal trash containers, etc.) shall be provided on site.
d) Manufacturer's recommended methods for spill cleanup shall be clearly posted and site personnel shall be trained regarding these procedures and the location of the information and cleanup supplies.
e) It is the Pollution Prevention Team Leader's responsibility to ensure that all hazardous waste on site is disposed of properly by a licensed hazardous material disposal company. The Pollution Prevention Team Leader is responsible for not exceeding hazardous waste storage requirements mandated by the EPA or state and local authority.
2. In the event of a spill of hazardous substances or oil, the following procedures must be followed:
a) All measures must be taken to contain and abate the spill and to prevent the discharge of the hazardous substance or oil to stormwater or off-site. (The spill area must be kept well ventilated and personnel must wear appropriate protective clothing to prevent injury from contact with the hazardous substances.)
b) For spills of less than five (5) gallons of material, proceed with source control and containment, clean-up with absorbent materials or other applicable means unless an imminent hazard or other circumstances dictate that the spill should be treated by a professional emergency response contractor.
c) For spills greater than five (5) gallons of material immediately contact the MA DEP Emergency Response at (888) 304-1133, and an approved emergency response contractor. Provide information on the type of material spilled, the location of the spill, the quantity spilled, and the time of the spill to the emergency response contractor or coordinator, and proceed with prevention, containment and/or clean-up as safely deemed necessary.
d) If there is a Reportable Quantity (RQ) release, then the National Response Center shall be notified immediately at (800) 424-8802; within 14 days a report will be submitted to the EPA regional office describing the release, the date and circumstances of the release and the steps taken to prevent another release. This Pollution Prevention Plan must be updated to reflect any such steps or actions taken and measures to prevent the same from reoccurring.
3. The Pollution Prevention Team Leader shall be the spill prevention and response coordinator. $\mathrm{He} /$ she will designate the individuals who will receive spill prevention and response training. These individuals will each become responsible for a particular phase of prevention and response. The names of these personnel will be posted in the material storage area and in the management office.

SECTION 3 - ILLICIT DISCHARGE STATEMENT

Certain types of discharges are allowable under the U.S. Environmental Protection Agency Construction General Permit, and it is the intent of this Long Term Pollution Prevention Plan (LTPPP) to allow such discharges. These types of discharges will be allowed under the conditions that no pollutants will be allowed to come in contact with the water prior to, or after its discharge. The control measures which have been outlined previously in this LTPPP will be strictly followed to ensure that no contamination of these non-storm water discharges takes place. Illicit discharges, if they exist currently, shall be contained and eliminated in the manner specified by local, state and federal regulations, and will be prohibited in the proposed development.

Applicant: Fairfield Residential Company, LLC

This Page Intentionally Left Blank

Appendix A

Maintenance and Inspection Forms

This Page Intentionally Left Blank
121 Grove Street Franklin, MA
Operation and Maintenance Plan Task Guide
The table below is a list of the minimum inspection and maintenance activities the Pollution Prevention Team needs to conduct for the Stormwater Operations and Management Plan and who is responsible for the activity. The task Guide is provided to assist the Pollution Prevention Team Leader and ensure that the activities are being conducted as scheduled.

Timing	Task	Responsible Party
Weekly	Inspect Lot/Land	PPT
Quarterly (March, June, September, December)	Inspect Catch Basins	PPT/Contractor
Semi-Annually (March and September)	Inspect Oil/Particle Separators Inspect Subsurface Systems Inlets, Outlets and overflow. Inspect sedimentation levels, remove as necessary Mow Surface Stormwater Basins	PPT/Contractor PPT/Contractor
Annually	Pollution Prevention Team training Comprehensive Annual Stormwater Evaluation and Inspection Report Clean Oil/Particle Separator Unit Clean Catch Basins Clean Infiltration Basins and inspect sedimentation levels, Remove sedimentation as necessary Inspect rip rap splash pads Inspect outlet control structure and power wash and jet vacuum	PPT Leader PPT Leader
PPT/Contractor		

121 Grove Street Franklin, MA
Once a year, the Pollution Prevention Team Leader must inspect and evaluate all aspects and provisions of the Operations and Maintenance Plan, complete the following report and keep a copy on file at the site.
Inspector/Reviewers

1. Review the Pollution Prevention Team list and update if necessary. Does the Pollution Prevention Team list need updating:
2. Review the Operations and Maintenance Plan (O\&M Plan). Are there sections of the O\&M Plan that need updating?
(circle one) Yes No
3. Review Monthly and Weekly Checklists. Update these as necessary
(circle one) Yes No
4. Review site drawings and update if necessary \quad Are there any updates needed to Spill and Leak History and/or the checklists?
(circle one) Yes No
121 Grove Street Franklin, MA
Operations and Maintenance Plan
Annual Training Sign-off Sheet
For each Operations and Maintenance Plan training session, the Team Leader should keep records of all attending Team Members using the signoff sheet below, as well as the training agenda, notes, etc.

121 Grove Street Franklin, MA
Operations \& Maintenance Plan Weekly Task Checklist
The site will be checked each week for trash and debris by a member of the Pollution Prevention Team. If any trash or debris is observed in the specified area, write "yes" in the $2^{\text {nd }}$ column and note the problem and corrective measures taken in the appropriate space. Make a new copy of this checklist each week.

GROUNDS AREA TO CHECK	TASK	DESCRIPTION OF PROBLEM	CORRECTIVE MEASURES TAKEN
 Roadways	Pickup and Dispose of Litter		
Landscaped Areas	Pickup and Dispose of Litter		
Compactor/Dumpster Areas	Check for Leaking Liquid Pickup and Dispose of Litter		
Perimeter of Property	Pickup and Dispose of Litter		

121 Grove Street Franklin, MA
Operations \& Maintenance Plan Monthly Task Checklist
The following will be checked each month for sources of pollutants by a member of the Pollution Prevention Team. If the condition in the "check for" column is observed, note the problem and corrective measures taken in the appropriate space. Make a new copy of the checklist each month.
Checklist completed by:

BMP	TASK	DESCRIPTION OF PROBLEM (IF PRESENT)	CORRECTIVE MEASURES TAKEN
Sweeping	Sweep Parking Lot and Paved Areas		
Steep Slope	Inspect steep slopes (greater than 3:1) throughout the site		

121 Grove Street Franklin, MA
Quarterly Task Checklist (March, June, September, December)
The following will be checked each month for sources of pollutants by a member of the Pollution Prevention Team. If the condition
 the checklist each month.
Checklist completed by:

BMP	TASK	DESCRIPTION OF PROBLEM (IF PRESENT)	CORRECTIVE MEASURES TAKEN
Catch Basins	Inspect for Sediment, Trash, and Oil.		

121 Grove Street Franklin, MA
Semi-Annual Task Checklist (March, September)
The site will be checked semi-annually four sources of pollutants by a member of the Pollution Prevention Team. If the condition in the "check for" column is observed, note the problem and corrective measures taken in the appropriate space. Make a new copy of the checklist each month.
Checklist completed by:

BMP	TASK	DESCRIPTION OF PROBLEM (IF PRESENT)	CORRECTIVE MEASURES TAKEN
Oil/Particle Separators	Inspect for Sediment, Trash, and Oil.		
Subsurface Systems	Inspect inlets, outlets, and overflow. Inspect sedimentation levels and remove as necessary.		
Surface Stormwater Basins	Inspect for Sediment.		

121 Grove Street Franklin, MA Operations \& Maintenance Plan Annual Task Checklist
The following will be check each year for sources of pollutant by a member of the Pollution Prevention Team. If a problem is observed, note the problem and corrective measures take in the appropriate space. Make a new copy of the checklist each year.
Checklist completed by:

BMP	TASK	DESCRIPTION OF PROBLEM (IF PRESENT)	CORRECTIVE MEASURES TAKEN
Pollution Prevention Team Training	Pollution Prevention Team Training.		
Oil/Particle Separators	Vacuum clean and Power wash.		
Catch Basins	Remove sediment and debris from sump and power wash.		
Subsurface Infiltration/Detention Basins	Inspect sedimentation levels, remove as necessary. Check stability of slopes, erosion and mow.		
Surface Stormwater Basins	Inspect for sediment and debris and structural integrity. Remove and repair as necessary.		
Rip rap Splash Pads	Inspect for sediment and debris and structural integrity. Remove and repair as necessary.		
Comprehensive Annual Stormwater Evaluation and Inspection Report	Compile the comprehensive annual stormwater evaluation and inspection report and file for future reference.		

121 Grove Street Franklin, MA Long Term Pollution Prevention Plan
Spill and Leak History
$(\ldots \quad$ to \quad)

This Page Intentionally Left Blank

Appendix B

C-2A - C-2B: Grading and Drainage Plans (for BMP Locations)

Appendix C

CDS Stormwater Treatment Unit Operation and Maintenance Guidelines

Hydrodynamic Separation Products Overview
Massachusetts

Patented continuous deflection separation (CDS) technology

Using patented continuous deflective separation technology, the CDS system screens, separates and traps sediment, debris, and oil and grease from stormwater runoff. The indirect screening capability of the system allows for 100% removal of floatables and neutrally buoyant material without blinding. Flow and screening controls physically separate captured solids, and minimize the re-suspension and release of previously trapped pollutants. Available in precast or cast-in-place. Offline units can treat flows from 30 to $8500 \mathrm{~L} / \mathrm{s}(1$ to 300 cfs). Inline units can treat up to $170 \mathrm{~L} / \mathrm{s}(7.5 \mathrm{cfs})$, and internally bypass larger flows in excess of $1420 \mathrm{~L} / \mathrm{s}(50 \mathrm{cfs})$. The pollutant removal capability of the CDS system has been proven in the lab and field.

How does it work?

Stormwater enters the CDS unit's diversion chamber where the diversion
 weir guides the flow into the unit's separation chamber and pollutants

CDS

- Removes sediment, trash and free oil and grease
- Patented screening technology captures and retains 100% of floatables, including neutrally buoyant and all other material larger than the screen aperture
- Operation independent of flow
- Performance verified through lab and field testing
- Unobstructed maintenance access
- Customizable/flexible design and multiple configurations available
- Separates and confines pollutants from outlet flow
- Inline, offline, grate inlet and drop inlet configurations available
- Multiple screen aperture sizes available
- Allows for multiple inlet pipes

Page 2 | Learn more at www.ContechES.com/tDS

Vortechs ${ }^{\circledR}$

High performance hydrodynamic separation

The Vortechs system is a high-performance hydrodynamic separator that effectively removes finer sediment, oil and grease, and floating and sinking debris. Its swirl concentrator and flow controls work together to minimize turbulence and provide stable storage of captured pollutants. The design also allows for easy inspection and unobstructed maintenance access. With comprehensive lab and field testing, the system delivers proven results and site-specific solutions.

Precast models can treat peak design flows up to 25 cfs; cast-in-place models handle even greater flows. A typical system is sized to provide an 80% load reduction based on laboratoryverified removal efficiencies for varying particle size distributions such as 50-micron sediment particles.

How does it work?

Water enters the swirl chamber at a tangent, inducing a gentle swirling flow pattern and enhancing gravitational separation. Sinking pollutants stay in the swirl chamber while floating pollutants are stopped at the baffle wall. Typically Vortechs systems are sized such that 80% or more of runoff through the system will be controlled exclusively by the low flow control. This orifice effectively reduces inflow velocity and turbulence by inducing a slight backwater appropriate to the site.
During larger storms, the water level rises above the low flow control and begins to flow through the high flow control. The layer of floating pollutants is elevated above the influent pipe, preventing re-entrainment. Swirling action increases in relation to the storm intensity, which helps prevent re-suspension. When the storm drain is flowing at peak capacity, the water surface in the system approaches the top of the high flow control. The Vortechs system will be sized large enough so that previously captured pollutants are retained in the system even during these infrequent events.

As a storm subsides, treated runoff decants out of the Vortechs system at a controlled rate, restoring the water level to a dry-weather level equal to the invert of the inlet and outlet pipes. The low water level facilitates easier inspection and cleaning, and significantly reduces maintenance costs by reducing pump-out volume.

Vortechs

- Proven performance speeds approval process
- Treats peak flows without bypassing
- Flow controls reduce inflow velocity and increase residence time
- Unobstructed access simplifies maintenance
- Shallow system profile makes installation easier and less expensive
- Very low headloss
- Flexible design fits multiple site constraints

Available Models

CDS Model	Typical Internal MH Diameter or Equivalent ID ${ }^{1}$ (ft)	Typical Depth ${ }^{2}$ Below Pipe Invert (ft)	Treatment Capacity ${ }^{3}$ (cfs)	Screen Diameter/ Height (ft)	Maximum Sediment Storage Capacity (CF)
2015_4	4	4.5	1.4	2.0/1.5	50
w/ 1' added sump	4	5.5	1.4	2.0/1.5	63
w/ 2' added sump	4	6.5	1.4	2.0/1.5	75
w/ 3' added sump	4	7.5	1.4	2.0/1.5	88
2015	5	4.7	1.4	2.0/1.5	79
w/ 1' added sump	5	5.7	1.4	2.0/1.5	98
w/ 2' added sump	5	6.7	1.4	2.0/1.5	118
2020	5	5.3	2.2	2.0/2.0	90
w/ 1' added sump	5	6.3	2.2	2.0/2.0	110
w/ 2 ' added sump	5	7.3	2.2	2.0/2.0	129
2025	5	5.6	3.2	2.0/2.5	97
w/ 1' added sump	5	6.6	3.2	2.0/2.5	117
w/ 2' added sump	5	7.6	3.2	2.0/2.5	136
3020	6	5.4	3.9	3.0/2.0	134
w/ 1' added sump	6	6.4	3.9	3.0/2.0	163
w/ 2' added sump	6	7.4	3.9	3.0/2.0	191
3030	6	6.2	6.1	3.0/3.0	157
w/ 1' added sump	6	7.2	6.1	3.0/3.0	185
w/ 2' added sump	6	8.2	6.1	3.0/3.0	213
4030	8	7.2	7.9	4.0/3.0	329
w/ 1' added sump	8	8.2	7.9	4.0/3.0	379
w/ 2 ' added sump	8	9.2	7.9	4.0/3.0	429
4040	8	8.3	12.4	4.0/4.0	381
w/ 1' added sump	8	9.3	12.4	4.0/4.0	431
w/ 2' added sump	8	10.3	12.4	4.0/4.0	482

1. Structure diameter represents the typical inside dimension of the concrete structure. Offline systems will require additional concrete diversion components
2. Depth below pipe can vary to accommodate site specific design. Depth below pipe invert represents the depth from the pipe invert to the inside bottom of concrete structure.
3. Treatment Capacity is based on laboratory testing using OK-110 (average d50 particle size of approximately 100 microns) and a 2400 micron screen.

Sediment Depths Indicating
 Required Servicing*

CDS Model	Sediment Depth (in.)
$2015 _4$	$18^{\prime \prime}$
2015	$18^{\prime \prime}$
2020	$18^{\prime \prime}$
2025	$18^{\prime \prime}$
3020	$18^{\prime \prime}$
3030	$18^{\prime \prime}$
4030	$27^{\prime \prime}$
4040	$27^{\prime \prime}$
Every 1 ' "f added sump depth	Add $9^{\prime \prime}$

[^7]
Available Models

Vortechs Model	Swirl Chamber Diameter		Internal Length		Peak Treatment Flow ${ }^{1}$		Sediment Storage ${ }^{2}$	
	ft	m	ft	m	cfs	L/s	yd3	m3
1000	3	0.9	9	2.7	1.6	45.3	0.7	0.5
2000	4	1.2	10	3	2.8	79.3	1.2	0.9
3000	5	1.5	11	3.4	4.5	127.4	1.8	1.4
4000	6	1.8	12	3.7	6	169.9	2.4	1.8
5000	7	2.1	13	4	8.5	240.7	3.2	2.4
7000	8	2.4	14	4.3	11	311.5	4	3.1
9000	9	2.7	15	4.6	14	396.4	4.8	3.7
11000	10	3	16	4.9	17.5	495.5	5.6	4.3
16000	12	3.7	18	5.5	25	707.9	7.1	5.4

1. Peak Treatment Flow is maximum flow treated for each unit listed. This flow represents an infrequent storm event such as a 10 or 25 yr storm. Standard Vortechs System depth below invert is 3' for all precast models.
Cast-in-place system are available to treat higher flows. Check with your local representatives for specifications.
2. Maintenance recommended when sediment depth has accumulated to within 12-18 inches of the dry weather water surface elevation.

| VortSentry HS |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Model | | Swirl Chamber |
| :---: |
| Diameter (ft) |\quad| Typical Depth |
| :---: |
| Below Invert (ft) |\quad| Treatment |
| :---: |
| Capacity (cfs) |\quad| Max. Inlet/Outlet |
| :---: |
| Pipe Diameter (in) | | Maximum
 Sediment Storage
 Capacity (CF) |
| :---: |
| VortSentry HS36* |

*maintenance recommended when sediment reaches a height of $3^{\prime}-7{ }^{\prime \prime}$ below water surface elevation in sump.
**maintenance recommended when sediment reaches a height of $4^{\prime}-9^{\prime \prime}$ below water surface elevation in sump.
*** maintenance recommended when sediment reaches a height of 6.0^{\prime} below water surface elevation in sump.

1. Design Flow Rate is based on 80% removal of particle size distribution with an average particle size of 240 micron. This flow also represents the maximum flow prior to which bypass occurs.

Notes: Systems can be sized based on a water quality flow (e.g. 1 inch storm) or on a net annual basis depending on the local regulatory requirement. When sizing based on a water quality storm, the required flow to be treated should be equal or less than the listed water quality flow for the selected system. Systems sized based on a water quality storm are generally more conservatively sized.
Additional particle size distributions are available for sizing purposes upon request.
Depth below invert is measured to the inside bottom of the system. This depth can be adjusted to meet specific storage or maintenance requirements. Contact our support staff for the most cost effective sizing for your area.

MASTEP Technology Review

Technology Name: CDS (Continuous Deflective Separator) - Contech Stormwater Solutions, Inc.

Studies Reviewed:

- Independent Review of CDS 2015 Product Evaluation, FB Environmental Associates, 2009.
- NJCAT Technology Verification Addendum Report High Efficiency Continuous Deflective Separators CDS Technologies Inc. December 2004
- Continuous Deflection Separation (CDS) Unit For Sediment Control In Brevard County, Florida January, 2000

Date: 12/16/2009
Reviewer: Jerry Schoen
Rating: 2
Brief rationale for rating: MASTEP rating is based primarily on FB Environmental 2009 laboratory study. This study generally followed NJDEP-recommended laboratory test protocols, with some exceptions: no evidence of a Quality Assurance Project Plan, little discussion of quality control, higher than recommended particle size distribution, limited range of influent sediment concentration, sediments analyzed by SSC method but not TSS.

The Florida field study monitored 5 storm events and encountered sampling/equipment problems in four of them. The NJCAT lab study was conducted on a unit that was specially modified for testing in New Jersey, and is now being sold in NJ and NY .

Other Comments:

FB Environmental Associates study:

- OK-110 sediment mix used. This is recommended by Maine DEP, but produces sediments somewhat larger than those recommended by New Jersey DEP.
- Sediment analysis conducted with whole sample; essentially SSC method. SSC is generally regarded as more accurate than TSS method, but comparisons with other studies or products that use TSS data are problematic.
- Full range of flows were tested.
- Only one target sediment concentration was tested; average influent SSC was 313 mg / l, slightly outside of recommended $100-300 \mathrm{mg} / \mathrm{I}$ range.
- Scour test was performed; system produced no scour at flows up to 137% of capacity.

NJCAT Study

- Expectations of sediment removal performance comparable to this study should be confined to units that contain the sediment weir and a 2400 micron screen.
- The study did not include a scour test.
- A particularly fine sediment mix (Sil-Col-Sil 106, pre-washed to remove all particles >100 microns), which makes sediment removal more difficult. Higher removal efficiencies may be obtained if sediment particle size range is larger.
- A narrow range of influent sediment (164-203 mg/l, average 184), was tested but this is within the NJDEP-recommended $100-300 \mathrm{mg} / \mathrm{l}$ range.
a TSS analysis appears to have been performed by a non- standardized method.
- No discussion of quality control.

Brevard County FL study

- This study was performed before release of the TARP Tier II Protocols and does not conform to them.
- The study states that "testing under higher flow conditions would be desirable."
- TSS, BOD , COD , pH, total phosphorus, and turbidity were monitored.

[^0]: ${ }^{1}$ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the lllicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.
 ${ }^{2}$ For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

[^1]: ${ }^{1} 80 \%$ TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

[^2]: $9.4 \quad 414$ Total

[^3]: $9.4 \quad 414$ Total

[^4]: $9.4 \quad 414$ Total

[^5]: $9.4 \quad 414$ Total

[^6]: *Equals remaining load from previous $\operatorname{BMP}(\mathrm{E})$ which enters the BMP

[^7]: * Based on 75\% capacity of isolated sump.

